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Preface

This is the second edition of Moss (2013). The objective of this text is to introduce
fundamental applied probability and reliability methods within one term of study so
that, as the course outcome, students can perform first-order probability of failure
analysis on Civil Engineering problems. To achieve this outcome I present a
simplified or streamlined approach to the material:

• Only basic necessary statistical methods are presented, focusing on an intuitive
understanding of the data and what it can tell us about past events.

• Probability is presented in a systematic manner to make solving the often tricky
probability problems more tractable.

• Only the normal and lognormal distributions are used in this text because
of their useful mathematical properties and because they can often approximate
a solution adequately for a first-order analysis.

• Functions of random variables are presented in a canonical manner to make
solving straightforward.

• A comprehensive set of reliability methods is presented, with emphasis on
methods that can be solved with minimal background in higher math.

• The tools of decision analysis, systems analysis, and other related topics are
presented in an applied and usable manner.

• Many examples covering a wide range of problems are presented.

New in this second edition are: more example problems, numerical solutions
presented in both MATLAB and R, and new chapters on spatial variability and
Bayesian updating.

My hope for this text is that: (1) Readers are left with an appreciation of the
uncertainty that exists in Civil Engineering problems and are able to quantify and
treat the uncertainty in a proper way to enhance Civil Engineering design, and
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(2) readers can tackle any problem and arrive at a first-order estimate of the
probability of failure which will enable them to determine if further effort is
necessary in refining the analysis.

San Luis Obispo, USA Robb Eric S. Moss, Ph.D. P.E. F.ASCE

Reference

Moss, R. E. S. (2013). Applied civil engineering risk analysis (1st edn.). Shedwick Press.
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Chapter 1
Introduction

Uncertainty exists. It exists in Civil Engineering problems, in both the engineering
analysis and the engineering design. The key to dealing with uncertainty is properly
quantifying it and then addressing it in a systematic manner. Some examples of
uncertainty that exist in Civil Engineering1 are presented in the following chapter,
but first we need to define uncertainty which comes in two forms;

1. Aleatory, and
2. Epistemic.

Aleatory uncertainty, with the root “alea” derived from the Latin for rolling of
dice, is the inherent or natural randomness,whereas epistemic uncertainty stems from
the lack of data, measurement error, improper mathematical modeling, or missing
explanatory variables. Aleatory is the irreducible uncertainty in a particular problem.
Epistemic is the reducible uncertainty that can be minimized through more study,
additional data collection, better modeling, and other steps to better quantify the
problem; it is the uncertainty that we as observers introduce into the problem. These
two forms of uncertainty are often difficult if not impossible to separate, and can
be hard to define depending on the problem and the perspective. Nonetheless the
concepts of aleatory and epistemic uncertainty hold true.

To help clarify what may be considered aleatory and what may be considered
epistemic, let us evaluate the breaking strength of concrete cylinders in a compression
test. If we had single batch of concrete cylinderswhichwe tested using the exact same
loading equipment, the variability of the breaking strength values could be considered
aleatory, but if therewas any bias or imprecision due to the loadmeasuring equipment
(e.g., load cell out of calibration) that would be considered epistemic. If a second
batch was tested and showed on average markedly different breaking strength, then
the manufacturing process could be the culprit. If tighter control could be exerted on
the manufacturing process to reduce the variability between batches then this batch

1Throughout this text the reference to Civil Engineering is shorthand for referring to Civil (Trans-
portation, Structural, Geotechnical, Water) and related fields such as Environmental Engineering,
Construction Engineering, and Engineering Geology. The methods presented in this text can apply
to all related fields equally.
© Springer Nature Switzerland AG 2020
R. E. S. Moss, Applied Civil Engineering Risk Analysis,
https://doi.org/10.1007/978-3-030-22680-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22680-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-22680-0_1
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Fig. 1.1 Statistics of dam failure in the USA [after van Gelder (2000)]

variability would be considered epistemic. And if all the breaking strength results
were averaged, and the average value was used in an engineering calculation without
including the variability, this would introduce additional epistemic uncertainty into
the engineering process.

In most Civil Engineering problems we start out with some data on the system
we are to analyze, and in almost all Civil Engineering problems we can frame the
problem as one of load versus resistance. Load iswhat is being required of the system.
Resistance is what the system can withstand (Load is synonymous with demand or
stress, resistance is synonymous with strength or capacity). We are interested in how
reliable the system is, or conversely what is the probability of failure (Pf) in situations
wewould like to avoid such as bridge collapse, slope failure, grid lock, culvert failure,
chemical overload, project incompletion …

The following figures provide examples of the uncertainty that exists within Civil
Engineering (Figs. 1.1, 1.2, 1.3, 1.4 and 1.5).

Example: Cantilever Beam
To demonstrate uncertainty in an engineering problem we will look at the
deflection of a simple cantilever beam. The deflection at the end of the beam
due to a point load is described by:



www.manaraa.com

1 Introduction 3

� = PL3

3EI

Here we will treat the load (P) and the length (L) of the beam as determinis-
tic, meaning there is no uncertainty in the values. But if the stiffness (EI) of
the beam is uncertain, due to manufacturing and material variability, then the
deflection would also vary.

P = 10 kN

L = 1 m

mean EI = 80 kNm2

std EI = 20 kNm2
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Fig. 1.2 Yield strength of steel reinforcing bars [after Julian (1957)]
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The mean stands for the typical or average value and std for the standard
deviation defining the uncertainty (these will be formally defined in subsequent
chapters). If we do a simple sensitivity study by including the uncertainty:

mean � = 10 kNm3

240 kNm2
= 0.042 m

mean + std � = 10 kNm3

300 kNm2
= 0.033 m

mean − std � = 10 kNm3

180 kNm2
= 0.056 m

We can see that the variability in material properties can have an impact on
the deflections. If the structural tolerance for deflection is <0.045 m then there
is a probability of unacceptable deformations and/or failure.

The bulk of this text is focused on estimating the influence of uncertainty on the
probability of failure by

• performing statistics on the data,
• applying the rules of probability,
• and defining failure within a reliability framework to calculate the probability of
failure.
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Statistics is simply a way of evaluating data. It is a means of interrogating past
events. Probability is a method of projecting trends, or forecasting the future. Fail-
ure is defined subjectively by some engineering criteria; displacement, cracking,
collapse, phase transformation, uptake, crossing …

Failure has traditionally been defined in Civil Engineering in an ASD/WSD
(allowable stress design/working stress design) formulation using a factor of safety.
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Factor of Safety = Strength/Stress (1.1)

A safe design is when the factor of safety ≥1. Here the uncertainty is often not
quantified, and when it is quantified will often be lumped into the resistance side of
the problem. As will be shown later in this text a more accurate means of defining
failure is by using the limit state formulation or margin of safety.

Margin of Safety = Strength − Stress (1.2)

A safe design is whenmargin of safety≥0. Here the uncertainty is often quantified
and separated into uncertainty contributed from the load and from the resistance,
respectively.

The probability of failure is then how near to the failure criteria a particular prob-
lem lies. Uncertainty is an inherent part of solving for the probability of failure.
Without measuring the uncertainty the probability of failure is meaningless. Proba-
bility comes in various forms and the philosophical underpinnings of probability are
quite complex and are open to many interpretations. Many authors have delved into
the meaning of probability (e.g., Laplace 1814) and readers are encouraged to follow
up on this if there is interest, but for our purposes we assume that probability exists
as a tool for forecasting future events or trends. Here we will define two camps with
respect to probability, the

• frequentist approach (or classic approach) and
• degree-of-belief approach (or Bayesian approach).

The frequentist approach relies on a large number of samples to define probability.
Frequentist probability works well for, say, Manufacturing Engineering where man-
made objects are produced in large numbers and the probability of a faulty item can
be forecast based on a large database of objects tested to failure.

The degree-of-belief approach will result in the same probability if enough data
exists for a particular problem but deals with situations where data is scarce, is
to expensive or infeasible to collect, and a probability must be arrived at to move
forward with the analysis. The types of problems that this approach lends to are the
probability of flooding at a particular site, the probability of liquefaction given the soil
conditions, the probability of a column buckling under a load, or the probability of a
contaminant moving into an aquifer… This form or probability is often necessary in
Civil Engineering because engineered features tend to be unique in both the resistance
and the load and there may be little or no data to draw from.

In practice the dual nature of probability can aid in achieving an engineering
solution. One approach does not negate the other, and both approaches are equally
valid and can be proven with mathematical rigor (De Finetti 1972, 1974).

Once we have determined the probability of failure we can frame the problem
with risk, where risk is defined in engineering as:

Risk = (Probability of Failure) · (Consequences) (1.3)
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We move through the steps of analyzing the data, assessing the probability, defin-
ing failure, estimating the probability of failure, and measuring the consequences.
We can then state what the risk is, usually quoted as an order of magnitude within
some time frame. The consequences of failure are a scaling metric, often a monetary
value or life loss number, used to rank the potential failure. The risk value can then
be used to compare with other potential failures or types of loss to achieve a com-
prehensive balanced assessment of all failure modes and their consequences, a level
assessment for making rational decisions.

For example, if we take the annual probability of levee failure in a specific location
due to seismic loading to be on the order of 10−6, this means there is a 1/1,000,000
chance of levee failure in any given year due to seismic loading. Let’s say that there
is an urban area behind the levee, and if levee breach and flooding were to occur, the
loss of life is estimated to be on average 10 people per failure. The annual risk of life
loss due to seismic failure of a levee is then 10−5. Compare this to the annual risk of
dying due to an auto accident of 6.0 (10−4) which is in this example 60 times higher.

There are two distinct forms of risk: voluntary and involuntary. Voluntary risk
is something that we subject ourselves to consciously, and involuntary risk is when
we are subjected to the risk without complete knowledge. The boundary is quite
fuzzy and hard to define, and migrates depending on several factors. For instance,
the annual risk of dying in a commercial airplane is less than 10−4 which has been
held stable for years. In the 70s there were a spate of plane accidents which pushed
the risk higher than 10−4. This resulted in public outcry, legislation requiring stricter
standards and safety oversight, and the decrease of the risk back down below the
10−4 range. Even though we choose to fly, the risk of dying in a commercial flight
is considered by society to be involuntary and a 1/10,000 chance of death is what
society deems as acceptable.

Contrast this with types of voluntary annualized risk of life loss that we subject
ourselves to regularly which fall in the 1/100 and 1/1000 range; risk 100–1000 times
greater than involuntary (Table 1.1). It’s also important to note that perceived risk is
not equal to real risk, as people are in general not good at perceiving how “risky”
things are. People tend to be afraid of dying via shark or bear attacks, but it is roughly
10,000 times higher annual odds that you will die in an accident in your home (e.g.,
falling from a ladder) than being attacked by a large predator.

Following the 9/11 attacks, airplane ridership dropped significantly in the USA as
people choose to travel by car instead. It has been estimated (Gigerenzer 2006) that
in the year following the attacks almost 1600 more people died in car accidents than
would have in an average year. That is roughly a 3% increase in annual car fatalities,
but is more than 6 times the number of passengers who died in the four hijacked
planes. Perceived versus real risk can have a significant impact on our choices and
actions. This can manifest not just in our personal life choices but in our professional
engineering decisions as well.
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Table 1.1 Risk comparison Type of risk Annual risk of
death

Annual odds of
death

Smoking a pack a
daya

3.6 (10−3) 1 in 278

Himalayan
mountaineeringa

2.8 (10−3) 1 in 356

Cancer (all types)f 2.6 (10−3) 1 in 387

Motor vehicle
accidentsc

6.0 (10−4) 1 in 1667

Killed in any warb 2.4 (10−4) 1 in 4167

Homicided 1.8 (10−4) 1 in 5556

Air travelc 7.0 (10−5) 1 in 14,286

Floode 1.0 (10−5) 1 in 100,000

Tornadoesc 4.0 (10−6) 1 in 250,000

Hurricanesc 4.0 (10−7) 1 in 2,500,000

aWilson and Crouch (1987), bSmall and Singer (1982), cUS
Nuclear Regulatory Commission (1975), dHolmes and De
Burger (1988), eLichtenstein et al. (1982), fhttp://www.hse.gov.
uk/education/statistics.htm

1.1 Chapter Summary

• Uncertainty exists in Civil Engineering analysis and design.
• Uncertainty comes in two forms: aleatory and epistemic.
• Almost all problems in Civil Engineering can be framed as load versus resistance
(synonymous with stress vs. strength or demand vs. capacity).

• Determining the probability of failure requires statistics to interrogate the data,
probability to forecast future trends, and a definition of failure within a reliability
framework.

• Probability can be viewed from a frequentist or degree-of-belief approach. The
material in this text leans toward the degree-of-belief or Bayesian approach.

• Risk is the product of the probability of failure and the consequences, usually
reported as an order of magnitude (e.g., annual risk of life loss on the order of
10−4).

• Risk can be categorized as voluntary or involuntary depending on how it’s applied
and perceived.
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Chapter 2
Data Analysis/Sample Statistics

Statistics is a means of interrogating past events. If we have some data on previous
events, statistics are a set of tools that allow us to quantify the trends of these past
events. Data in Civil Engineering is often scarce due to the unique nature of the
engineered features (e.g., bridges, buildings, levees, tunnels, pipelines), but there
are situations where we can assume that the data is similar enough in its variability,
which is termed homoscedastic, to represent the same type of engineering problem.
In these cases we need to estimate the trends of an occurrence of some event related
to the engineered feature. How do we quantify uncertainty given some observations?
The methods covered in this chapter include

• Frequency plots (aka histograms),
• Sample statistics (for single and multiple variables), and
• Estimation methods.

A variable is defined as something that can assume a mathematical value for
engineering calculation purposes.1 Take for instance the equation of a line, Y =
mX + b. Assuming that we know the slope, m, and the intercept, b, then X is a
variable that can assume a range of mathematical values to calculate Y.

2.1 Histograms

A histogram is a means of plotting up data on a single variable to observe the fre-
quency of occurrence. It is a bar chart showing how often the measured event occurs.
Here we will take some annual rainfall data and look at what a histogram can tell

1A variable will be denoted in this text by a capital letter, X, whereas a specific numerical value of
that variable will be denoted by a lower case letter, x. When a variable assumes a specific value we
can describe it as X = x.

© Springer Nature Switzerland AG 2020
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us about rainfall events. Rainfall data was collected for 49 consecutive years and
reported as the annual accumulation (usually in centimeters)2 as shown in Table 2.1.

The frequency or count for a particular annual rainfall value is then plotted as a
histogram (Fig. 2.1). If we label the rainfall data with the variable X, then the data is
binned with bin widths of x + �x (where � is some small change in the value of x).

As can be seen in the histogram, the most frequent average annual rainfall value
is 20, and 20 happened 12 of the 49 years resulting in 12/49 = 0.25 or 25% of the
time. There are no hard rules about selecting the bin width; however, the bin width
can have a dramatic impact on what the histogram looks like and what information
it conveys. A convention that can be used to determine the bin width is (Benjamin
and Cornell 1970):

Table 2.1 Annual rainfall
data for 49 consecutive years

18 16 18 26 24 18

24 22 24 20 22 20

22 20 16 26 18 22

20 18 24 20 18 26

16 24 20 16 20 20

22 20 18 18 22 22

26 22 22 18 20 20

24 26 20 16 22 24
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Fig. 2.1 Histogram or frequency plot of rainfall data

2Metric units will be used throughout this text, with a preference for SI units. Using SI units
is consistent with the rest of the world (only the US still uses English units), helps greatly in
minimizing computational errors, and is far easier to use and understand. The goal is that someday
the US will move out of the past and adopt the SI system once and for all.
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Fig. 2.2 Cumulative relative frequency plot of rainfall data

k = 1 + 3.3 · log(n) (2.1)

where k is the number of intervals between the maximum and minimum values
observed, n is the number of data observed, and log is the base 10 logarithm.

If we divided the frequency of occurrence, the y-axis on the histogram, by the total
number of observations it would then show relative frequency. Relative frequency is
useful if we are comparing two different data sets that have different total number
of observations; it normalizes the data. We can also sum these relative frequencies
at each bin to plot the cumulative relative frequency distribution (Fig. 2.2).

Both the frequency plot and the cumulative frequency plot (normalized or not)
provide us with useful information about the data. The frequency plot shows the
most likely outcome and how the data clusters around this value. The cumulative
plot shows there is a gradual change between bins and the relative frequency for
values ≤x. The general shape of these plots is going to be important in subsequent
chapters when we tackle probability and theoretical probability distributions.

2.2 Central Tendency

The central tendency is measuring the most likely outcome of a data set. The his-
togram in Fig. 2.1 shows us the most likely value, visually but that can be influenced
by the bin size. The most common measure of central tendency of a data set is the
average or arithmetic mean, called the sample mean. For a data set of observed
values x = x1, x2, . . . , xn the sample mean is:
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x̄ = 1

n

n∑

i = 1

xi (2.2)

If we calculate the sample mean of the rainfall data it is x̄ = 20.77. The mode is
the most frequently occurring value, which is 20 for the rainfall data as observed in
the histogram. The final common measure of central tendency is the median which
is the value with 50% on either side, or the middle value in an ordered list (the middle
value if n is odd, the average of the two middle values if n is even). For the rainfall
data the media is x0.5 = 20.

Note that when the frequency plot is symmetric the mean, median, and mode are
equivalent (mean = mode = median). This is a nice property of symmetric data or
symmetric distributions.

2.3 Dispersion

Dispersion is the measure of how the data is dispersed or spread out from the central
tendency. This is the variability of a particular problem. The variability is due to
aleatory and epistemic uncertainty and has been captured in the measurement of
the data set. Ways of describing dispersion include the range, the sample variance,
sample standard deviation, and the coefficient of variation.

The range is the spread between the maximum and minimum values in a data set.
The rainfall data set ranges from 16 to 26; therefore, the range is 10. This measure
of dispersion is simple but tends to emphasize the extreme values and neglect the
bulk of the data around the central tendency. The sample variance conceptually is
analogous to the moment of inertia about a center of gravity. It is also analogous to
the squares of distance. Calculating the sample variance is accomplished by:

s2 = 1

n − 1

(
n∑

i = 1

x2i − nx̄2
)

(2.3)

Dividing by n−1 provides an unbiased estimate of the sample variance (Benjamin
and Cornell 1970; Ang and Tang 2007). The dispersion is usually reported as the
sample standard deviation, s, which is the square root of the sample variance. The
rainfall data has a sample standard deviation of s = 2.97. A normalized form of
dispersion is the coefficient of variation, which is the sample standard deviation
divided by the sample mean:

δ = s

x̄
(2.4)
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This is quite useful when comparing the dispersion from different data sets. It is
often reported in literature and can be estimated based on trends or limited data. The
coefficient of variation for the rainfall data is δ = 0.14 or 14%.

The equations of the central tendency and dispersion are presented here but in
most cases these will be calculated using built-in functions in common computation
software (e.g., Excel, MATLAB, Maple, etc.).

2.4 Estimation of Variance

The dispersion or variance can often be estimated or approximated when there is
insufficient data to calculate it by using the methods above. Three types of estimation
methods include coefficient of variation published in the literature, the “6 Sigma”
approach, and expert consensus.

For most Civil Engineering problems there is precedent, meaning that someone
has tackled a problem similar enough that it can be used as an analog. We can find
published coefficient of variation values in the literature in various places depending
on the problem. These are not catalogued in any one place but can be found in codes,
specifications, or technical journal publications. Table 2.2 provides a starting point
for most geotechnical and structural problems.

Because geotechnical engineering uses natural and not man-madematerials, there
is depth in the geotechnical literature discussing dispersion and parameter uncer-
tainty. An example of this is the work by Kulhawy and Mayne (1990) where they
provide a comprehensive assessment of the coefficient of variation for both labora-
tory and in situ geotechnical tests. These values were accumulated from many tests
over many years and can be applied to any specific problem with some confidence
that the dispersion will be reasonably approximated. The coefficient of variation
is multiplied by the sample mean of any specific problem to arrive at a defensible
sample standard deviation.

The “6 Sigma” approach can be used for approximating the dispersion where
it can be assumed the data has a relatively symmetric distribution (e.g., previous
rainfall histogram). The steps are

• estimate the mean or median value for a variable,
• conceive of the upper and lower extreme values, and
• divide the range by 6 to get the standard deviation.

This gives an estimate of 99.9% of the data which is ±3 standard deviations
on either side of the mean. This is a useful approach, but note that humans are
notoriously bad at estimating extreme values. Many failures of Civil projects are due
to poor understanding of extreme loads or unforeseen load combinations. So caution
must be taken when applying this approach.

The method of expert consensus is used in many situations where the dispersion
is unquantified and there are many sources that contribute to the uncertainty. This
method is just as it sounds, get a group of experts together and have them estimate
the dispersion. The experts can be polled to give their best estimate of the standard
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Table 2.2 Typical coefficients of variation for geotechnical and structural properties [after Harr
(1987)]

Type Parameter δ (%)

Soil Porositya 10

Specific gravityb 2

Water content-clayc 13

Degree of saturationc 10

Unit weightd 3

Permeabilitye 90–240

Compression index-sandy clayf 26

Compression index-clayc 30

Friction angle-gravelg 7

Friction angle-sandg 12

Structural loads Dead loadh 10

Live loadh 25

Snow loadh 26

Wind loadh 27

Earthquake loadh >100

Structural resistance Steel-tension member-yieldingh 11

Steel-tension member-tensile strengthh 11

Steel-compression beam-uniform momenth 13

Steel-plate/girder-flexureh 12

Reinforced concrete-grade 60 steel-flexureh 11

Reinforced concrete-grade 40 steel-flexureh 14

Reinforced concrete-cast in place beam-flexureh 8.0–9.5

Reinforced concrete-short columnsh 12–16

Wood-compressive strengthi 19

Wood-flexural strengthi 19

aSchultze (1972), bPadilla andVanmarcke (1974), cFredlund andDahlman (1972), dHammit (1966),
eNielsen et al. (1974), fLumb (1966), gSchultze (1975), hEllingwood et al. (1980), iBorri et al. (1983)

deviation, or their best estimate of the range which would then lend to the “6 Sigma”
approach. The same caveat of extreme values applies here as well, experts are also
susceptible to a limited ability to conceive of extreme values.
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2.5 Correlation of Paired Data

Engineering data often comes in pairs. At the beginning of this chapter we discussed
the equation of a line where Y was a function of the X. Here X is the independent
variable andY the dependent variablewhere the slopem and the intercept b are treated
as coefficients. We infer the relationship between X and Y through the mathematical
function of a straight line. If X and Y are positively correlated that means that as
X increases so does Y. Negative correlation would indicate the opposite trend, as X
increases Y decreases. We can calculate how X and Y vary together; this is called
the sample covariance:

sxy = 1

n

n∑

i = 1

(xi − x̄)(yi − ȳ) (2.5)

But more useful is to normalize the sample covariance to arrive at the sample
correlation coefficient:

ρ = sxy
sx sy

= 1

n

n∑

i = 1

(
xi − x̄

sx

)(
yi − ȳ

sy

)
(2.6)

The correlation coefficient describes the normalized dependence between the two
variables and takes a value in the range from+1 to−1. If there is one-to-one positive
dependence betweenX and Y then the correlation coefficient is equal to 1. Figures 2.3
and 2.4 give examples of covariance and correlation coefficient.

A quick means of estimating the correlation coefficient of paired data is by using
the properties of an ellipse. As shown in Fig. 2.5 the height and thewidth of the ellipse
can be used in Eq. (2.7) to estimate ρ. The correlation coefficient is proportional to
the ratio of the ellipse width, h, to the ellipse height, H:

Fig. 2.3 Paired data
showing small covariance
(sxy = small) and positive
correlation (ρ ~ 1)

y

x
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Fig. 2.4 Paired data
showing large covariance
(sxy = large) and negative
correlation (ρ ~ −1)

y

x

Fig. 2.5 Estimating
correlation coefficient using
an ellipse

x

y Hh

ρ =
√√√√

(
1 −

(
h

H

)2
)

(2.7)

Note as the ratio goes to zero the correlation coefficient goes to 1. This ellipse
approximation provides a good check on the correlation found using regression
presented the next section.

2.6 Basic Linear Regression

The most common approach to determine the correlation coefficient in engineering
is by linear regression. Spreadsheet programs have “best fit” functions built into
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the graphing operations making this a simple task. Here only the very basics of
regression will be covered so that the correlation value can be used later when we get
to probability and systems. There are any number of textbooks written about linear,
multilinear, nonlinear, orthogonal, Bayesian, and other types of regression (e.g., Ang
and Tang 2007; Moss 2009).

Least squares linear regression is a means of best fitting a straight line to paired
data, X and Y. The objective is to get the mean or expected value of Y given X = x
using a straight line as the mathematical relationship between the two:

E(Y |X = x) = βx + α (2.8)

The slope, β, and the intercept, α, are the coefficients we need to solve for given a
particular set of observed paired data. A “best fit” straight line is one that minimizes
the error for all observations. The total absolute error for all the data points can be
represented by the total cumulative squared error:

�2 =
n∑

i = 1

(yi − α − βxi )
2 (2.9)

The solution for this, a partial differential equation minimizing the squared error
in the slope and intercept (Ang and Tang 2007), is:

β =
∑

(xi − x̄)(yi − ȳ)
∑

(xi − x̄)2
(2.10)

α = ȳ − β x̄ (2.11)

The variance of this “best fit” is the sample conditional variance of Y given X:

s2Y |x = �2

n − 2
(2.12)

Ifwe normalize the conditional variance ofY givenX by the variance ofY alonewe
arrive at a measure of the reduction in variance due to X because they are correlated
and their variances are interrelated:

r2 = 1 − s2Y |x
s2Y

(2.13)

The r2 is a common metric used in regression to qualify how well the line fits the
data. A high r2 indicates that there is a greater reduction in the conditional variance
associated with the regression which results in a better prediction of Y. It has been
shown (Ang and Tang 2007) that the correlation coefficient is related to r2 as the
number of samples, n, becomes large:
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ρ =
√

1 − n − 2

n − 1

s2Y |x
s2Y

≈
√
r2 (2.14)

This then brings us back to paired data and the correlation of X and Y, but here
using linear regression to estimate the correlation coefficient. Notice the similarities
between Eqs. (2.14) and (2.7); both are the square root of one minus the ratio of the
variance of Y given X over the variance of Y alone.

Example: Shear Strength with Depth
This example (after Moss 2009, Appendix) presents the results of a linear
regression analysis.We are interested in how the shear strength changes linearly
with depth given the data in the table.

Depth Shear 
Strength

6 0.28
8 0.58
14 0.5 
14 0.83
18 0.71
20 1.01
20 1.29
24 1.5 
28 1.29
30 1.58

Strength = 0.0516*Depth+0.0184
r² = 0.83555

0
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h

Shear Strength

The equations for linear regression are presented in this chapter, but it can be
carried out easily using the curve fit option in Excel, or using the curve fitting
toolbox in MATLAB. The results show a fairly linear relationship between the
two variables with an r2 of 0.84, suggesting that for this problem depth is a
reasonably good predictor of shear strength. Note that the variables have been
switched in this problem because viewing depth along the vertical axis makes
intuitive sense.

2.7 Chapter Summary

• A histogram is a useful way of viewing the frequency of data and how it is
distributed.
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• Frequency data can also be plotted in cumulative form and normalized to provide
the relative cumulative frequency.

• The central tendency of data can be described using the mean, median, and/or
mode.

• The dispersion of data can be described using the variance, standard deviation,
and/or coefficient of variation.

• Estimations of variance can be achieved by looking for reported coefficient of
variation published in the literature, using the “6 Sigma” method, and soliciting
expert consensus.

• Paired data can be plotted to determine if correlation exists. A rough estimate of
the correlation coefficient can be made using the ellipse approach.

• Linear least squares regression can also be used to estimate the correlation coef-
ficient of paired data.
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Chapter 3
Elementary Probability and Set Theory

We have interrogated the past in Chap. 2 by applying statistical tools to some data.
Now in order to design for future events we need to forecast what is likely to happen
during the design life of an engineered feature. This is where probability comes in.
Probability is heavily used in Civil Engineering risk analysis because as mentioned
before data is often scarce.

Set theory is a logical framework for defining the relationships between events.
Venn diagrams provide a visual way of defining these relationships and in defining
probability. Probability is itself an independent branch of mathematics that is:

• Logically consistent,
• Founded on 3 axioms, and
• Defines the components of probability (but does not define what probability is or
what it means).

Probability theory arose from gambling. A friend of Blaise Pascal’s (the renown
mathematician of themid-1600s) posed a dice question to himabout the probability of
winning a particular dice game with certain combinations. Pascal started a technical
discussion with his equally renown colleague Pierre de Fermat, and through a series
of letters the two worked out the theory of probability (Bernstein 1998; Gonic and
Smith 1993). The 3 axioms that Pascal and Fermat worked out are still the basis for
probability theory today:

Axiom 1: For every event (A) there is a probability; P(A) ≥ 0,
Axiom 2: The probability of all events (S) is one; P(S) = 1,
Axiom 3: For two mutually exclusive events, (A) and (B), the probability of the
union of the two events is the sum of the probabilities of the individual events;
P(A ∪ B) = P(A) + P(B).

The first two axioms are relatively self-explanatory and define the range of prob-
ability from 0 to 1. The third axiom with the terms mutually exclusive and union will
be defined after a discussion of the nature of probability and set theory (Ang and
Tang 1975).
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3.1 Nature of Probability

The nature of probability is often vehemently argued in certain circles with the
same vigor that is usually reserved for politics or religion. In Civil Engineering we
utilize all forms or interpretations of probability to aid in solving our problems. Here
probability will be classified into four types:

1. Probability from relative frequency (i.e., observed from statistical information).
As with the rainfall data in Chap. 2 we observed the most frequent value of 20
occurred 25% of the time (12/49).

2. Probability from a priori information, usually defined by elementary or geomet-
ric constraints of the problem (e.g., when flipping a coin P(tails) = 50%).

3. Probability assigned subjectively, per expert consensus or engineering judg-
ment.

4. Probability from mixed information:
(observed) + (a priori) + (subjective). Using all available information like this
is often called a Bayesian approach.

Example: Fault Rupture (a priori Probability)
A fault has been discovered under the foundation of a power plant. The fault
has been mapped at 150 km long, and the power plant is located 50 km from
one end. Seismological investigations indicate that the fault is likely to produce
a MW6.5 event which could result in 30 km of surface fault rupture contained
within the 150 km total length. The fault is equally likely to rupture along its
entire length. Should the MW6.5 event occur, what is the probability that the
surface fault rupture occurs under the power plant?

150km

50km30km

The30kmsurface rupture can equally occur anywhere along the fault length,
but is contained within the 150 km fault (150–30 km). We are concerned with
the likelihood of it occurring beneath the power plant (30 km).

P(rupture beneath plant) = 30

(150 − 30)
= 0.25 or 25%

https://doi.org/10.1007/978-3-030-22680-0_2
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3.2 Venn Diagrams and Set Theory

Venn diagrams are an intuitive way of visualizing events and visualizing probabili-
ties. Set theory describes the logical/mathematical relationship between events. The
following is the set theory terminology and operators we will be using for events,
along with a Venn diagram visually showing the relationships being described.

TheVenn diagram below and left shows the entire sample space (S) as represented
by the box. The circle (A) represents an area within the sample space that is our event
of interest. The sample space (S) is collectively exhaustive meaning it contains all
possible events or combinations of events; therefore it has a probability of 1. The
probability of (A) is equal to the area of (A) with respect to the total area of the sample
space (S).

P(A) = P(A)

P(S)
= fractional area of A

1
(3.1)

This concept of area ratios is useful in conceptualizing an event with respect
to all possible events for a particular problem. When we have two events that are
mutually exclusive, meaning that they share no area of sample space in common,
then the union is accomplished by adding their fractional areas.

B

A

P(A ∪ B) = P(A) + P(B) (3.2)

Union (∪)
A∪B is the occurrence of A or B or both events. The operative word here is orwhich
is theword youwant to equatewith the union (∪) symbol.As theVenn diagram shows
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the union includes the sample space of both events combined. Here the two events
are not mutually exclusive because they have some sample space in common.

Intersection (∩)
A∩B is the occurrence ofA andB jointly. The operativeword here is andwhich is the
word you want to equate to the intersection (∩) symbol. As the Venn diagram shows
the intersection includes only the areawhere the two events overlap or intersect. Often
the intersection symbol is dropped and the set theory statement becomes simply AB.

Set theory follows the same logical rules as arithmetic, such as the commutative,
associative, and distributive rules. The commutative rule means that the order of
events in a union or intersection does not affect the outcome, that is:

A ∪ B = B ∪ A and AB = BA (3.3)

The associative rule means that all events are equally associated with a union or
intersection:

(A ∪ B) ∪ C = A ∪ (B ∪ C) and (AB)C = A(BC) (3.4)

And the distributive rule means that an event can be distributed equally when
there is an intersection:

(A ∪ B)C = (AC) ∪ (BC) (3.5)

These rules should be familiar and almost intuitive because there are the same
rules we learn at an early age with respect to addition and multiplication.



www.manaraa.com

3.3 Complement 27

3.3 Complement

The complement of an event is one minus the event; it is the sample space that
represents everything but the event. The complement is represented by a bar over the
event (e.g., Ā). Therefore:

P(A) = 1 − P
(
Ā
)

(3.6)

P
(
Ā
) = 1 − P(A) (3.7)

3.4 Addition Rule

The addition rule defines the mathematics of the union of events. The union of event
A and event B includes the combined area of A and B. The union states that the
outcome could be event A, or event B, or both. We sum the area of A and the area
of B, but have double counted the intersection so must subtract AB to arrive at the
combined area:

B

A
AB

P(A ∪ B) = P(A) + P(B) − P(AB) (3.8)

If A and B aremutually exclusive (ME) that means there is no joint area and the
intersection is zero, therefore:
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B

A

P(A ∪ B) = P(A) + P(B) if ME (3.9)

Extending the addition rule for three events results in:

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

− P(AB) − P(BC) − P(AC) + P(ABC) (3.10)

Here we subtract the double-counted area, but thenmust add the triple intersection
back into arrive at the union. A Venn diagram can aid in visualizing this solution.

3.5 De Morgan’s Rule

What is commonly called De Morgan’s rule is not a rule itself but more a subset
of the addition rule. Nonetheless it is traditionally called De Morgan’s rule and will
be referred to as such in this text. De Morgan’s is an alternate way of solving the
addition rule when the complement is easier to compute. A Venn diagram is often
the best way to visualize De Morgan’s:

P(A ∪ B) = 1 − P
(
A ∪ B

) = 1 − P
(
Ā B̄

)
(3.11)

P(A ∪ B ∪ · · · ∪ Z) = 1 − P
(
A ∪ B ∪ · · · ∪ Z

)

= 1 − P
(
Ā B̄ . . . Z̄

)
(3.12)

The Venn diagram of the union of A and B is shown below:
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The Venn diagram of the complement of the union is everything outside the union
(see below), and if we take the complement of that we arrive at the first diagram.

The Venn diagram of the intersection of the complement of A and the complement
of B is the double-hatched region (see below), and if we take the complement of that
we arrive at the first diagram again.

Example: Water and Power Demand
A 6-building complex has recently been constructed, and the buildings are
unleased as of yet. The engineer wants to meet the demand for water and
power utilities as closely as possible without costly over- or under-targeting.
For any one building the electricity can be either 5 or 10 units, and the water
can be either 1 or 2 units. The total sample space then looks like:

E5W2 E10W2

E5W1 E10W1

The owner ascribes the following probabilities (expert consensus) based on
previous experience with similar type of buildings:
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P(E5W1) = 0.1
P(E10W1) = 0.1
P(E5W2) = 0.2
P(E10W2) = 0.6

⎫
⎪⎪⎬

⎪⎪⎭
sums to 1.0�

(a) What is the probability of water demand of 2 units?

P(W2) = P(E5W2) + P(E10W2) = 0.2 + 0.6 = 0.8

Note that P(E5W2) and P(E10W2) are mutually exclusive.

(b) What is the probability of power demand of 10 units?

P(E10) = P(E10W1) + P(E10W2) = 0.1 + 0.6 = 0.7

(c) What is the probability of either the water demand is 2 units or the power
demand is 10 units?

P(W2 ∪ E10) = P(W2) + P(E10) − P(W2 ∩ E10) addition rule

= P(W2) + P(E10) − P(E10W2) intersection

= 0.8 + 0.7 − 0.6 = 0.9

Note In solving these problems I will annotate to the right what rule was used
for each step to aid in problem-solving clarity.

3.6 Conditional Probability Rule

It’s been said that every probability is a conditional probability, and this statement
rings true the more one spends working on probability problems. Conditional prob-
ability defines the measure of dependence between events; it is large when events
occur jointly, small when they don’t, and zero when events are mutually exclusive. A
typical conditional probability question is “What is the probability of event A given
the occurrence of event B?”:

P(A|B) = P(AB)

P(B)
(3.13)
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Because B has occurred the sample space is limited to the area of A within B; the
area is restricted to the conditional event space. The area ofA occurringwithinB is the
intersection of A and B. The conditional probability is this intersection normalized
by B, the ratio of the intersection AB to the total area of B.

If B has no influence on A then we can say that the two events are statistically
independent (SI).

P(A|B) = P(A) if SI (3.14)

The above statement (Eq. 3.14) is the onlymeans of determining if two events
are statistically independent. Statistical independence pertains to the influence of
one event on another, which is much different from mutual exclusivity that pertains
to the sample space two events have in common. Events A and B may intersect but
that does not dictate whether they are statistically independent or not.

Another way to think of conditional probability is through the correlation coeffi-
cient introduced in Chap. 2. In both we are describing the influence of one event upon
another; however the correlation coefficient is constrained to a linear relationship.

if P(A|B) > P(A) then ρ = +
if P(A|B) < P(A) then ρ = −
if P(A|B) = P(A) then ρ = 0

When the conditioned event has a higher probability than the marginal event then
there is a positive correlation, when it has a lower probability than the marginal
event then there is a negative correlation, and when the conditioned event has an
equal probability to the marginal event the events are statistically independent and
the correlation coefficient is zero.

Note that often P(A) and P(A|B) come from an engineering study and the joint
probability P(A ∩ B) or P(AB) is what is desired, where:

P(AB) = P(A|B)P(B)

= P(B|A)P(A)

Example: Water and Power Demand II
What’s the probability that a building that needs 10 units of power will also
require 2 units of water? In this problem the probability of 2 units of water is
conditioned on the demand for 10 units of power.

P(W2|E10) = P(E10W2)

P(E10)
= 0.6

0.7
= 0.86 conditional probability rule

https://doi.org/10.1007/978-3-030-22680-0_2
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Example: Rolling Dice
Two die are rolled together. What is the probability the dice sum to 3?

1
2
3
4
5
6

1
2
3
4
5
6

2/36

Now one die is rolled and comes up 1. What is the probability that both dice
sum to 3?

1 1
2
3
4
5
6

1/6

reduced
sample
space

In the second situation the sample space is reduced because it is conditional.

3.7 Multiplication Rule

The multiplication rule defines the mathematics for the intersection of events. We
rearrange the conditional probability rule to solve for the intersection or joint prob-
ability:

P(AB) = P(A|B)P(B) (3.15)

If we determine that A and B are statistically independent then the conditional
probability statement is reduced and we have the multiplication of two marginal
event probabilities:

P(AB) = P(A)P(B) for SI (3.16)

For two events we can reverse the statement to check statistical independence:

P(A)P(B) = P(AB) (3.17)
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But this does not necessarily hold true for more than two events (Der Kiureghian
2001) and one should always check statistical independence with the conditional
probability rule. For three events the multiplication rule becomes:

P(ABC) = P(A|BC)P(B|C)P(C) (3.18)

Example: Building Foundation
The foundation of a tall building may fail due to inadequate bearing capacity
(B) or excessive settlement (S). The following probabilities are known for this
type of building and failure situation:

P(B) = 0.001; P(S) = 0.008; P(B|S) = 0.10

(a) What is the probability of failure of the foundation? Failure would be B
or S or both.

P(B ∪ S) = P(B) + P(S) − P(BS) addition rule

= P(B) + P(S) − P(B|S)P(S) conditional probabilty rule

= 0.001 + 0.008 − 0.10(0.008) = 0.0082

(b) What is the probability the building will experience excessive settlement
but not bearing capacity failure?

P
(
S ∩ B̄

) = P
(
SB̄

) = P
(
S|B̄)

P
(
B̄

)
multiplication rule

= P
(
B̄|S)

P(S) commutative property

= [1 − P(B|S)]P(S) complement

= [1 − (0.10)]0.008 = 0.0072

Example: Fault Rupture II
In this example we are readdressing the 150 km long fault with the potential
for 30 km of surface fault rupture. For this example there are three pipes that
cross the fault.
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150km

30km

1 2 3

A B C D E

The distance between points: A to B = 60 km, B to C = 10 km, C to D =
12.5 km, and D to E = 67.5 km. Pi here denotes a failure of pipe i.
(a) What is the probability of failure of each pipe? The solution is the same

as for the power plant.

P(Pi ) = 30

(150 − 30)
= 0.25 a priori

(b) What is the probability of P1 and P2? The 30 km surface rupture must
include the 10 km distance between B and C.

P(P1 ∩ P2) = P(P1P2) = (30 − 10)

(150 − 30)
= 0.167 a priori

(c) What is the probability that 1 break, given that 2 has broken?

P(P1|P2) = P(P1P2)

P(P2)
conditional probabilty rule

= 0.167

0.25
= 0.667

(d) Are P1 and P2 statistically independent?

P(P1|P2) �= P(P1) therefore not SI

(e) What is the probability of 1 and 3 breaking?
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P(P1P3) = (30 − 10 − 12.5)

(150 − 30)
= 0.0625 a priori

(f) What is the probability of at least one of the first two pipes failing?

P(P1 ∪ P2) = P(P1) + P(P2) − P(P1P2) addition rule

= 0.25 + 0.25 − 0.167 = 0.333

(g) The first two pipes are redundant and only one needs to survive tomaintain
continued service (water, phone, other…).What is the probability at least
one will survive?

P
(
P̄1 ∪ P̄2

) = 1 − P(P1P2) De Morgan’s rule

= 1 − 0.167 = 0.8333

(h) What is the probability that both will survive?

P
(
P̄1 P̄2

) = 1 − P(P1 ∪ P2) De Morgan’s rule

= 1 − [P(P1) + P(P2) − P(P1P2)] addition rule

= 1 − [0.25 + 0.25 − 0.167] = 1 − 0.333 = 0.667

3.8 Problem-Solving Rubric

Solving elementary probability problems can be intuitive for some people and opaque
for others. However, as the complexity of the problems increases they tend to become
opaque to all. In order to aid in solving elementary probability problems there are
some commonalities that lend to a routine problem-solving rubric. Practice of this
rubric with simple problems makes solving more complex problems tractable and
routine.

Rubric

(1) Declare all knowns. This can be tricky in some problems because the knowns
may be implicit, unobvious, or not directly stated.

(2) Write the problem statement in set terminology. This means translating the
word statement into unions and/or intersections of events. This is often the
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hardest part of any elementary probability problem and takes careful dissection
of the problem statement and translation of it into set theory.

(3) Reduce the statement to a calculable formby invoking the rules of probabil-
ity. If the set theory statement is correct then this step is often a straightforward
manipulation of the rules of probability until a mathematical calculation can be
performed.

This rubric works for most problems of elementary probability, but not all. There
are a few things to watch out for when problems get tricky:

• In certain problems a priori probability is part of the knowns but not explicitly
stated.

• Some problems result in complex probability statements that can be simplified by
invoking De Morgan’s rule.

• When in doubt draw a Venn diagram to clarify what the probability statement is
describing.

• Adhere to logic when solving these problems.
• Always perform a “gut check” on the answer when a resulting probability is
calculated. Is the answer reasonable and does it answer the word statement?

3.9 Total Probability Theorem

Total probability is a theorem that applies to a marginal event probability that is
composed of many conditional events. Equation (3.19) and the Venn diagram below
are shown for three condition events, but this theorem can be extended to any number
of conditional events (Eq. 3.20).

AE1
E2 E3

P(A) = P(A|E1)P(E1) + P(A|E2)P(E2) + P(A|E3)P(E3) (3.19)

P(A) =
n∑

i=1

P(A|Ei )P(Ei ) (3.20)

The best way to elucidate this theorem is through example.
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Example: Hurricane Damage
Hurricanes are categorized by increasing wind speed, Category 1 through Cat-
egory 5. Based on historical hurricane data along the Louisiana Coast the
annualized probability of each category is:

P(C1) = 0.35, P(C2) = 0.25, P(C3) = 0.14,

P(C4) = 0.05, P(C5) = 0.01.

In this problem we are interested in the probability of structural damage
due to hurricane winds. Reconnaissance of previous hurricane disasters has
shown that structural damage can be approximated by the following conditional
probabilities:

P(D|C1 . . .C5) = 0.05, 0.10, 0.25, 0.60, 1.00

Given this information, what is the annual probability of structural damage?

P(D) = P(D|C1)P(C1) . . . P(D|C5)P(C5) total probability theorem

= 0.05 × 0.35 + 0.10 × 0.25 + 0.25 × 0.14 + 0.60 × 0.05 + 1.00 × 0.01

= 0.1175

3.10 Bayes’ Theorem

If we combine the conditional probability rule and the multiplication rule we arrive
at what is called Bayes’ Theorem.

P(B|A) = P(A|B)P(B)

P(A)
(3.21)

This theorem (often called Bayes’ rule) is a simple enough statement that has
a lot of history behind it and has caused more than a few scandals in the realm of
statistics and probability. It is named after Thomas Bayes, a minister who worked
on probability in his spare time. He perished before publishing his work, but his
proofs were published posthumously by his colleague Richard Price circa 1763. The
theorem was independently rediscovered and published by Laplace (1812).

Bayes’ theorem describes an inverse probability, that of event B given the occur-
rence of event A. In this form the theorem is often used for updating the probability
of something given subsequent information. The following examples demonstrate
this Bayesian updating.
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Example: Aggregate Supply
In this problem there is aggregate being delivered to a construction site from
two sources, A and B. Trucks from sources A deliver 600 loads a day of which
3% is bad (meaning it does not meet the project specifications). Trucks from
source B deliver 400 loads a day of which 1% is bad.
(a) What is the probability of bad aggregate?

First we must declare the probability that the aggregate is from each source
and declare the conditional probability of bad aggregate.

P(A) = 600

(600 + 400)
= 0.60 P(B) = 400

(600 + 400)
= 0.40

P(Bad|A) = 0.03 P(Bad|B) = 0.01

P(Bad) = P(Bad|A)P(A) + P(Bad|B)P(B) total probability

= 0.03 × 0.60 + 0.01 × 0.40 = 0.022

(b) If the aggregate is bad, what is the probability it was from source A?

This is the type of inverse probability statement that lends well to using
Bayes’ theorem. Often in problems like this total probability and Bayes’ the-
orem go hand-in-hand.

P(A|Bad) = P(Bad|A)P(A)

P(Bad)
Bayes’ theorem

= 0.03 × 0.60

0.022
= 0.818

Example: Pollution Control
This problemdealswith urban air quality. It has been determined that a city’s air
pollution is primarily due to two sources; industrial (I) and auto (A) emissions.
In the next 5 years the chances of controlling these two emissions sources have
been estimated at 75 and 60% respectively. If only one of the two sources is
controlled, there is an 80% probability of bringing air pollution under control
(C).
(a) What is the probability of controlling air pollution?

The probability of controlling air pollution is conditioned on controlling the
two sources. It can be divided into four conditional probability statements that
are summed together per total probability.

If both sources are controlled then control is obviously achieved, 100%. As
stated previously if one of the other sources is controlled, the probability of
air quality control is 80%. And if neither source is controlled then there is no
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chance of control, 0%. In this problemwe are assuming that industrial and auto
emissions are statistically independent.

P(C) = P(C1|AI )P(AI ) + P
(
C2|AĪ

)
P

(
AĪ

) + P
(
C2| ĀI

)
P

(
ĀI

) + P
(
C3| Ā Ī

)

= 1(0.60 × 0.75) + 0.80(0.60 × 0.25) + 0.80(0.40 × 0.75) + 0(0.4 × 0.25)

= 0.81

(b) If pollution is not controlled after 5 years, what is the probability it was
due entirely to auto pollution?

All the conditional and marginal probabilities needed to answer this inverse
probability statement can be found in the total probability statement above.

P
(
ĀI |C̄) = P

(
C̄ | ĀI )P(

ĀI
)

P
(
C̄

) Bayes’ theorem

= 0.20 × 0.30

0.19
= 0.32

Books, theses, and other documents have been written on the philosophical
underpinnings of Bayes’ theorem and applications using a Bayesian approach (e.g.,
McGrayne 2011). The Bayesian approach has been used quite successfully in areas
where there is limited data and an estimate of the probability must be made. This
procedure of estimating the probability given limited data tends to fly in the face of
classical or frequentist statistics and for a period of time, spanning the early to mid-
dle 1900s, was considered equivalent to statistical heresy. Nonetheless people found
it quite useful for solving difficult problems where there was no classical solution,
and it gradually took hold. Since the 1960s, there was movement to provide a robust
mathematical basis for the Bayesian approach which succeeded in establishing the
validity on equal footingwith classical statistics. To this day there are still intellectual
battles between the two camps, classical versus Bayesian, but this often has more to
do with ones’ own philosophical view of determinism than which method solves the
problem adequately.
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3.11 Chapter Summary

• Probability is founded on three axioms.
• A probability can be of different forms depending on the problem and the way it
is framed; relative frequency, a priori, subjective, and Bayesian.

• Set theory is a way of logically expressing the union (or) or intersection (and)
of events.

• Venn diagrams are a means of visually showing how events are related within the
sample space.

• Tools for solving probability problems are the rules and theorems that are an exten-
sion of the three axioms of probability; complement, addition rule,DeMorgan’s
rule, conditional probability rule,multiplication rule, total probability theo-
rem, and Bayes’ theorem.

• Using a problem-solving rubric is useful as probability problems become more
complex and nonintuitive. The rubric provides a systematic way of solving most
problems encountered in probability.

• Two events aremutually exclusive when they share no sample space in common.
When mutually exclusive, the occurrence of one event precludes the occurrence
of the other.

• Statistical independence is when the occurrence of one event does not influ-
ence the probability of occurrence of another. The dependence between events is
measured using the conditional probability rule.

References

Ang, A. H.-S., & Tang, W. H. (1975). Probability concepts in engineering planning and design:
Volume I—Basic principles. New York: Wiley.

Bernstein, P. L. (1998). Against the Gods: The remarkable story of risk. Wiley.
Der Kiureghian, A. (2001). Structural Reliability CE229 course notes. UC Berkeley.
Gonick,L.,&Smith,W. (1993).The cartoonguide to statistics.NewYork:HarperCollinsPublishers
Inc.

Laplace, P. S. (1812). Théorie analytique des probabilities. Paris: Original tretise.
McGrayne, S. B. (2011). The theory that would not die. How Bayes’ rule cracked the enigma code,
hunted down Russian submarines, and emerged triumphant from two centuries of controversy.
Yale University Press.



www.manaraa.com

Chapter 4
Random Variables and Probability
Distributions

A random variable is amathematical tool for describing an event. It maps the possible
outcomes of an event onto a number line as shown below. The Venn diagram shows
the sample space with events A and B. These are mapped onto a number line to aid
in mathematical calculations. In Fig. 4.1, A and B are mutually exclusive, whereas
in Fig. 4.2 they have some sample space in common.

The random variable in these figures is denoted by a capital letter, X, and the
number that the random variable assumes is the lower case, x. Here eventA is mapped
to the random variable X and is comprised of all real numbers within that space:
A = {xn ≤ X ≤ xm}.

We can look at the range of values that X can assume and calculate the relative
probability of any particular value or range of values; this then defines a probability
distribution.

4.1 Probability Distribution

A distribution is classified first by the type of number it describes, whether it is
discrete or continuous. An example of a discrete number in Civil Engineering would
be a traffic count (e.g., 12 cars made a left-hand turn at the intersection). An example
of a continuous number would be a contaminant concentration (e.g., 0.055 g/m3 of
polyvinyl chloride).

Themathematical density of a discrete probability distribution is shown inFig. 4.3.
This is analogous to a histogram, showing the likelihood of any discrete value occur-
ring with respect to all other discrete values. A discrete probability distribution is
called a probabilitymass function,PMF, is denotedby the symbol pX (x), and is equal
to the probability of the random variable X assuming a particular value P(X = x)
for all x values.
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Real
Number
Line x

A B

xn xm

A

B

Fig. 4.1 Mapping mutually exclusive events to a real number line

B

A

Real
Number
Line x

A B

Fig. 4.2 Mapping not-mutually exclusive events to a real number line

pX(x) 

x 
x1  .  .  .  .  xn 

PMF

pX(x)=P(X=x) 
     for all x 

Fig. 4.3 The probability mass function, PMF, is the probability distribution for a discrete number



www.manaraa.com

4.1 Probability Distribution 43

The cumulative distribution of a discrete number is called a CDF or cumulative
distribution function. It is denoted by the symbol FX (x) and is equal to the probability
of the random variable X being less than or equal to a particular value:

FX (x) =
∑

all xi≤x

P(X = xi ) =
∑

all xi≤x

pX (xi ) = P(X ≤ x) (4.1)

Figure 4.4 shows an example of a cumulative distribution function. Notice that
the cumulative probability sums to 1.0 at the upper bound.

For continuous numbers we must define a small interval dx to describe the prob-
ability density because for a continuous number P(X = x) = 0 as the number goes
out to an infinite number of decimal places. The probability distribution of a continu-
ous number is called the probability density function, PDF, is denoted by the symbol
fX (x), and is equal to the probability of the random variable over the small interval
P(x < X ≤ x + dx). Figure 4.5 shows a probability density function, of which the
area under the entire curve must sum up to 1.0.

FX(x) 

x 
x1  .  .  .  .  xn 

CDF

FX(x)=P(X≤x) 
     for all x 

1.0 

Fig. 4.4 Cumulative distribution function, CDF, for a discrete number

fX(x) 

x 

PDF

fX(x)dx=P(x<X≤x+dx) 
Area=1.0 

dx 

Fig. 4.5 Probability density function, PDF, for a continuous variable
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FX(x) 

x 

FX(x)=P(x≤X) 

1.0 
CDF

Fig. 4.6 Cumulative distribution function, CDF, for a continuous variable

We can also show the cumulative distribution function, CDF, for a continuous
variable in the same manner as before, but instead of summing we integrate.

FX (x) =
∫

P(x ≤ X ≤ x + dx)

=
x∫

−∞
fX (x)dx = P(x ≤ X) (4.2)

Figure 4.6 shows the cumulative distribution function for a continuous variable,
with the upper bound approaching 1.0.

Bydefiningprobability distributions in thismannerwecan then answer probability
questions with ease. If we are dealing with a discrete number, like train crossings,
and want to know how many crossings have occurred, then we consult the PMF for
that specific number. If we have a continuous number, like axial load on a column,
and want to know the probability of exceeding some load, then we consult the CDF
for that number and take the complement. We will discuss more problem solving of
this type later in the chapter.

4.1.1 Generalities of Probability Distributions

Probability distributions can take on anymathematic form (i.e., any equation) as long
as they satisfy the three axioms of probability; the function must be nonnegative and
probabilities of all possible values must add up to 1.0. To frame this with a CDF:

(1) FX (−∞) = 0 and FX (∞) = 1.0.
(2) FX (x) ≥ 0 for all x and is nondecreasing with x.
(3) FX (x) is continuous to the right.

Therefore any mathematical function satisfying the three axioms is a valid prob-
ability distribution. There are fundamentally two reasons for the existence of a prob-
ability distribution: mathematical utility (e.g., normal distribution), and conceptual
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utility (e.g., Poisson distribution). An entire menagerie of pre-defined probability
distributions exists that people have come up with to solve some problem requiring
the mathematical or conceptual utility of those particular functions. These can be
found in statistics text or reference books (e.g., Ang and Tang 2007). But to reiter-
ate, any mathematical function that satisfies the three axioms is a valid probability
distribution. Examples of common probability distributions are:

• Continuous—Uniform (i.e., a straight line), triangular, exponential, normal, log-
normal, Gamma, Beta, extreme value, etc.

• Discrete—Binomial, Poisson, geometric, etc.

In this text we will only be using the normal and lognormal, for mathematical ease
and simplicity, but all the discussions herein apply to any probability distribution.

Some things to keep inmindwhen selecting and applying a probability distribution
to a particular problem:

• Does the variable of interest represent something that is infinite or does it have a
finite upper bound?

• Is it a variable that can assume a negative value, or must it be positive?
• To fit a distribution to a particular problem some tricks that are often used; shifted
distributions, compound or mixed distributions, or truncated and renormalized
continuous distributions.

There is nothing magical about any particular mathematical function that is a
probability distribution, and you simplywant one that best describes the phenomenon
of interest and doesn’t introduce anymore epistemic uncertainty than necessary. That
being said the choice of a distribution is often subjective and should be thoughtfully
and clearly justified.

Note: It is common to drop the subscripts on the generic names of probability
distributions for brevity. Therefore:

PMF pX (x) = p(x)

PDF fX (x) = f (x)

CDF FX (x) = F(x)

Example: Wind Loading
A structural engineer is designing a tall tower to withstand wind loads. Based
on themaximum annual wind velocity recorded over many years the histogram
of the data looks like the figure below. The engineer decided to model the data
using a negative exponential function because it provides a reasonable fit to the
data, a subjective decision that introduced epistemic uncertainty to the problem
but provided mathematical convenience in solving the problem.
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The negative exponential function is now being used as a PDF describing
the probability of max annual wind speed P(x < X ≤ x + dx).
(a) What is the CDF for this problem?
The CDF is the integral of the PDF and will allow us to answer questions about
less than or greater than a particular value easily.

F(x) =
x∫

0

f (x)dx =
x∫

0

λe−λxdx = −e−λx
∣∣x
0 = 1 − e−λx where x ≥ 0

(b) Data shows that the probability of the max annual wind speed less than
70 kph is 90%. Estimate the coefficient (λ) of the function.

We could use the PDF and integrate from 0 to 70, or the CDF at that value
since it is the integral of the PDF.

0.9 = P(0 ≤ X ≤ 70) = P(X ≤ 70) = F(x)
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0.9 = 1 − e−λ70 e−λ70 = 0.1

−λ70 = ln(0.1) λ = 0.033

Now that we have the PDF, the CDF, and the coefficient in the equation
we can move forward to answer any number of engineering-related probability
questions.

(c) What’s the probability of the max annual wind speed between 35 and
70 kph?

Here we want the area under the PDF from 35 to 70 kph. With the CDF this is
accomplished by evaluating at 70 and then subtracting at 35 because the CDF
is the pre-integrated area under the PDF.

P(35 ≤ X ≤ 70) = F(70) − F(35)

P(35 ≤ X ≤ 70) = (
1 − e−0.033(70)

) − (
1 − e−0.033(35)

)

= 0.900 − 0.685 = 0.215 or 21.5%

(d) What is the probability that the max annual wind speed will be greater
than 140 kph?
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The area under the PDF that is greater than 140 kph answers this question,
which is equivalent to the complement of the value of the CDF at 140 kph.

P(X ≥ 140) = 1 − P(X ≤ 140) = 1 − F(140)

P(X ≥ 140) = 1 − (
1 − e−0.033(14)

) = 0.0099 or approximately 1%

4.2 Expectation and Moments

A probability distribution is a theoretical representation of the frequency of occur-
rence, analogous to the histograms generated from data as shown in Chap. 2. We
can quantify the central tendency and dispersion of probability distributions just the
same as we did with sample statistics from empirical data.
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4.2.1 Central Tendency

The central tendency can be quantified as the mean, mode, or median. Themean for
probability distributions, called the expectation or first moment, for discrete and
continuous numbers, respectively, is:

E(x) = μ =
n∑

i=1

xi · p(xi ) (4.3)

E(x) = μ =
∞∫

−∞
x · f (x)dx (4.4)

Themode is themost probable value or value of highest probability and is denoted
by x̃ . The median, as before with sample statistics, is the value with 50% on either
side, or when the CDF is equal to 50%:

xm = F(xm) = 50% (4.5)

When a probability distribution is symmetric, the mean, median, and mode are
equivalent.

4.2.2 Dispersion

The spread of a probability distribution can be quantified by the variance for discrete
and continuous, respectively, as:

Var(x) =
n∑

i=1

(xi − μ)2 · p(xi ) (4.6)

Var(x) =
∞∫

−∞
(x − μ)2 · f (x)dx (4.7)

The standard deviation, often called the second moment, is the square root of
the variance.

σ = √
Var(x) (4.8)

The normalized form of dispersion is the coefficient of variation, which is the
standard deviation divided by the mean:



www.manaraa.com

50 4 Random Variables and Probability Distributions

δ = σ

μ
(4.9)

Higher moments can be calculated but are generally unimportant for the purposes
of engineering risk analysis. The equations of the moments are presented here but in
most cases these will be calculated using built-in functions in common computation
software (e.g., Excel, MATLAB, Maple).

4.3 Multivariate Probability Distribution

We may encounter an engineering problem where we are mapping an event onto
two lines to describe two random variables involved in the event. We are not limited
to two random variables, but with two we can draw the joint probability in three
dimensions. For two variables we can define the joint CDF, as well as the joint PMF
for discrete numbers and joint PDF for continuous numbers:

CDF:F(xy) = P(X ≤ x,Y ≤ y) (4.10)

PMF:p(xy) = P(X = x,Y = y) (4.11)

PDF: f (xy)dxdy = P(x < X ≤ x + dx, y < Y ≤ y + dy) (4.12)

The joint PDF can look something like Fig. 4.7, a three-dimensional surface
showing the joint probability of X and Y.

Multivariate distributions, of course, follow the rules of probability. The multi-
plication rule is the joint probability distribution of X and Y which is equal to the
conditional probability distribution ofX andY multiplied by themarginal distribution
of Y:

f (xy) = f (x |y) f (y) (4.13)

If X and Y are statistically independent random variables, then the multiplication
rule simplifies to the product of their marginal probability distributions:

f (xy) = f (x) f (y) (4.14)

The marginal distribution can be determined from a joint distribution by integrat-
ing out the other marginal distribution:

f (y) =
∞∫

−∞
f (xy)dx (4.15)
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Similarly all the other rules and theorems of probability apply and can be used
to help solve engineering problems. If we are dealing with a joint distribution where
the marginals are correlated, then we often describe the amount of correlation by
the correlation coefficient (as discussed in the previous chapters) here applied to
probability distributions:

ρ = Cov(xy)

σxσy
(4.16)

Cov(xy) = E(xy) − E(x)E(y) (4.17)

4.4 Theoretical Distributions: Normal and Lognormal

As mentioned there is an entire menagerie of theoretical distributions that achieve
some mathematical utility, conceptual utility, or both. In this text we will confine our
discussion of specific theoretical distributions to the normal and lognormal distribu-
tions because they satisfy both utilities and will provide us with a quick first-order
approximation for the majority of problems encountered in Civil Engineering.

Fig. 4.7 Joint PDF of X and Y showing their marginal distributions, the joint plan view (upper
left), and the joint 3D view (lower right)
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4.4.1 Normal Distribution

The normal distribution, or Gaussian distribution as it is sometimes called, is defined
by the following mathematical function:

f (x) = 1

σ
√
2π

exp

(
−1

2

(
x − μ

σ

)2
)

for − ∞ < x < ∞ (4.18)

This function is symmetric, has a “bell-shaped” curve, and is completely defined
by the first (μ) and second (σ ) moments. The normal distribution has been found to
describe the likelihood of many natural phenomena from a very broad range of fields.
The history of the normal distribution starts with gambling in the 1700s, traverses
through many mathematical treatises for 100s of years, and continues today where it
finds almost ubiquitous application in realms utilizing probability and mathematics.
The shorthand notation used for the PDF of the normal distribution is N (μ, σ )

(Fig. 4.8).
A change in the mean (μ) value will shift the distribution left or right, but leave

the breadth of the curve unchanged. A change in the standard deviation (σ ) will
change the breadth of the curve, thereby altering the height of the curve, but leave
the central tendency unshifted.

We can also define what is called the standard normal distribution, a normalized
distribution that has a mean of zero (μ = 0) and a unit standard deviation (σ = 1)
which can be shorthanded to N (0, 1). The indefinite integral of the standard normal
distribution, that is the CDF, is denoted by the symbol �(x) (Fig. 4.9).

Unfortunately there is no closed-form solution to this indefinite integral; therefore
the CDF of the standard normal distribution is usually presented in tabular form as
can be found inAppendixA. There are also approximation equations of the CDF, also
presented in Appendix A. For computational purposes the tabular or approximate
CDF of the standard normal distribution is programmed into almost every handheld
calculator and computational software available today (e.g., MATLAB, R, Maple,

f(x) 

x 
+∞-∞

Fig. 4.8 Example PDF of the normal distribution, N (μ, σ )
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Excel). The tabulated values are given only for positive values because the standard
normal CDF is symmetric; therefore:

�(−x) = 1 − �(x) (4.19)

And the values of x for probabilities less than p < 0.5 are negative and can be
calculated as:

x = �−1(p) = −�−1(1 − p) (4.20)

For the standard normal distribution the probability (or area) within ±1 standard
deviation is 68.3%, within ±2 standard deviations is 95.4%, and within ±3 standard
deviations is 99.7%. One can see that three standard deviations on either side of the
mean account for almost all of the likelihood for a problem dealing with a normally
distributed random variable.

If we have a random variable that is normal (meaning that its probability distribu-
tion is described by the normal distribution), or we can reasonably assume that it is
normal, we can easily solve probability problems with the tabulated standard normal
distribution results:

P(a < X ≤ b) = �

(
b − μ

σ

)
− �

(
a − μ

σ

)
(4.21)

It has been shown that the sum of independent random variables asymptotically
approaches the normal distribution regardless of the distribution of the underlying
variables. This property of the normal distribution will become important in the next
chapter where we deal with functions of random variables. The above statement
affirms the central limit theorem (CLT) which states that the sum of N random
variables approaches normality as N becomes large:

f(x) 

x 
+∞-∞

μ=0 

-1σ +1σ

Fig. 4.9 Standard normal distribution N (0, 1)
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z = k1 + k2 + . . . + kn

z =
∑

k → N (μz, σz)

Example: River Flows
A river stage gage (in former Yugoslavia) measured peak annual flows over
39 years. The data appears to be normally distributed with N(28,676; 21,117).
Compute the probability that the peak flow will be less than 100,000; 80,000;
and 50,000 in any given year, and determine the return period for each of these
flows.

P(X ≤ x) for N (μ, σ ) is �(x) therefore:

P(X ≤ 100,000) = �

(
100,000 − 28,676

21,117

)
= �(3.38) ∼= 0.99964

where we are using Appendix A to approximate �(x) values.

P(X ≤ 80,000) = �

(
80,000 − 28,676

21,117

)
= �(2.43) ∼= 0.99245

P(X ≤ 50,000) = �

(
50,000 − 28,676

21,117

)
= �(1.01) ∼= 0.84375

The return period (T ) is usually given as the annual probability of
exceedance in years, and exceedance is the complement of a value less-than-
or-equal-to.

T = 1

P(X > x)
= 1

1 − P(X > x)
= 1

1 − �(x)
therefore:

T (100,000) ∼= 1

1 − 0.99964
= 2777.8 yrs

T (80,000) ∼= 1

1 − 0.99245
= 132.5 yrs

T (50,000) ∼= 1

1 − 0.84375
= 6.4 yrs

So for the lowest flow value (50,000) there is a probability of 84% that the
flows will be less than this value, and the return period for this flow is roughly
six and a half years.
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Fig. 4.10 Example PDF of
the lognormal distribution,
LN(λ, ξ)

f(x) 

x 
+∞

0 

4.4.2 Lognormal Distribution

The lognormal distribution is just that the log of the normal distribution. Here log
refers to the natural log (ln) or log base e. The mathematical function that describes
the lognormal distribution is:

f (x) = 1

ξ x
√
2π

exp

(
−1

2

(
ln(x) − λ

ξ

)2
)

for x ≥ 0 (4.22)

The lognormal distribution starts at zero and goes to infinity which makes this
distribution often useful for describing numbers in engineering that cannot take a
negative value (e.g., penetration resistance, flow rate) (Fig. 4.10).

The moments for this distribution are the log-transformed first and second
moments:

λ = ln(μ) − 1

2
ξ 2 (4.23)

ξ 2 = ln

(
1 + σ 2

μ2

)
(4.24)

For the lognormal distribution it is often more convenient to use the median and
coefficient of variation because:

λ = ln(xm) (4.25)

ξ ≈ δ for δ ≤ 0.3 (4.26)

A lognormal distribution with a median of xm = 10 has a λ ∼= 2.303, and the
coefficient of variation δ to ξ is one to one for values less than about 30%. Since the
lognormal is just the natural log of the normal, then we can use the standard normal
distribution once we log transform the parameters:
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P(a < X ≤ b) = �

(
ln(b) − λ

ξ

)
− �

(
ln(a) − λ

ξ

)
(4.27)

Because of the summation properties of the normal distribution and the mathe-
matics of logs, it can be shown that the product ofN random variables asymptotically
approaches the lognormal distribution. This will also be important in the next chapter.

z = k1k2 . . . kn

ln(z) = ln(k1) + ln(k2) + · · · + ln(kn)

ln(z) =
∑

ln(ki ) → LN(λz, ξz)

Example: Rainfall Intensity
The average annual rainfall over a 24 h period in San Luis Obispo in the fall
months is x̄ = 2.3 cm. A rather intense storm came through on 13 October
2009 that dropped 8.8 cm within 24 h. What is the probability that there could
be a storm with a higher 24 h total? Since the rainfall total cannot be less than
zero, we will assume that the distribution is lognormal. The shaded area in the
figure represents the question we are asking.

There is no information on the variability, and only the average was reported
by the weather service. Here we will use the “6 Sigma” approach to make
an estimate of the uncertainty to arrive at a rough first-order estimate of the
probability. For this problemwe will assume that the maximum intensity could
be something like 15 cm and the minimum would be no rain or 0 cm. Dividing
this range by 6 gives a sample standard deviation of s = 2.5 cm.

Solving for the lognormal parameters given the sample mean and estimated
sample standard deviation:
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ξ 2 = ln

(
1 + σ 2

μ2

)
≈ ln

(
1 + s2

x̄2

)
= ln

(
1 + 2.52

2.32

)
= 0.78

ξ = √
0.78 = 0.88

λ = lnμ − 1

2
ξ 2 ≈ ln x̄ − 1

2
ξ 2 = ln(2.3) − 1

2
(0.78) = 0.44

With the parameters of the lognormal distribution we can now solve for the
probability of exceedance.

P(X > 8.8) = 1 − P(X ≤ 8.8) = 1 − �

(
lnx − λ

ξ

)

= 1 − �

(
ln8.8 − 0.44

0.88

)
= 1 − �(1.97) ≈ 1 − 0.975

= 0.025

So the first-order answer is that there is a 2.5% chance that a storm can
dump more rain than the one that occurred on 13 October 2009. This is of
course a function of our assumptions. The maximum assumed value may be
underestimated, and if this is so we are estimating a lower probability. The
assumption that it follows the lognormal distribution which is infinite in the
positive direction gives us a higher probability. But given the minimal informa-
tion we started with, we were able to estimate that this storm was a relatively
intense storm and that the odds of a more intense one are not high.

Example: Structural Supports
A structure has three supports A, B, and C. The loads on these supports can be
estimated with reasonable accuracy, but the soil conditions are heterogeneous
below the support footings. Assume the settlements SA, SB, and SC can be
defined as independent normal variates based on subsurface field testing with:

μSA = 3.0 cm δSA = 0.20

μSB = 2.5 cm δSB = 0.30

μSC = 3.0 cm δSC = 0.25

What is the probability that the total settlement exceeds 3.5 cm, which
would result in the slab of the structure being misaligned with the incoming
underground utilities?
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Fig. 4.11 Starting with a lognormally distributed variable (left figure), we replot it in semilog space
(right figure)

P(S > 3.5) = P(SA > 3.5 ∩ SB > 3.5 ∩ SC > 3.5)

= P(SA > 3.5)P(SB > 3.5)P(SC > 3.5) statistically independent

= (1 − P(SA ≤ 3.5))(1 − P(SB ≤ 3.5))

(1 − P(SC ≤ 3.5)) complement

=
(
1 − �

(
3.5 − μA

σA

))(
1 − �

(
3.5 − μB

σB

))(
1 − �

(
3.5 − μC

σC

))

standard normalwith σ = δ · μ

= (1 − �(0.83))(1 − �(1.33))(1 − �(0.67))
∼= (0.20)(0.09)(0.25) = 0.005

The probability of any of the supports exceeding 3.5 cm is roughly 0.5%,
essentially negligible from a settlement standpoint.

The lognormal distribution is commonly used in engineering practice for repre-
senting many hazards that by their nature must take positive numbers (e.g., ground
motions, flood levels, wave heights, fault displacements). We are often concerned
with the probability of exceedance; for example, what is the annualized likelihood
of exceeding some engineering threshold that could cause damage to our Civil Engi-
neering feature. Below are a series of figures (Figs. 4.11, 4.12, and 4.13) showing
how these exceedance curves are generated from a lognormal distribution (after Steve
Thompson, LCI).

So we have represented the probability distribution of a hazard with the lognor-
mal distribution. Then following the process above we have arrived at an annualized
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Fig. 4.12 The cumulative distribution of the variable is now presented (left plot), and the comple-
ment of that provides the exceedance curve (right plot)

Fig. 4.13 The exceedance curve in log–log space (left figure) gives the characteristic downsloping
function, which when multiplied by a mean annual rate will produce an annualized probability of
exceedance curve (right figure)

probability of exceedance curve. The mean annual rate would be calculated from
some data on the hazard using tools presented in Chap. 2. The final figure (Fig. 4.13
right) provides results that can be compared to other annualized hazards and if mul-
tiplied by consequences can be compared to other annualized risks as presented in
Table 1.1.
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4.5 Chapter Summary

• A random variable is an event mapped to a real number line. This allows for
mathematical calculations of likelihood.

• A probability distribution shows all possible values a random variable can assume
and the relative likelihoods of those values.

• Numbers can be discrete or continuous, and the probability distributions reflect
this. For discrete numbers there is the probability mass function, PMF, for con-
tinuous numbers there is the probability distribution function, PDF, and the sum
or integral of these results in the cumulative distribution function, CDF. Each of
these distributions refers to a specific relationship between the number line and
the likelihood of a number or range of numbers.

• Any mathematical function can be a probability distribution as long as it satisfies
the three axioms of probability. There are a number of common pre-defined prob-
ability distributions, of which we will be focusing on the normal and lognormal
distribution.

• The first and second moment of a distribution refers to the mean and standard
deviation of the distribution.

• When two or more random variables are of interest, we consider a multivariate
distribution, where commonly the correlation or independence of the marginal
distributions is the primary concern.

• The normal and lognormal distributions satisfy both mathematical and conceptual
utilities for most Civil Engineering problems and can be used to quickly make a
first-order assessment of the probability.

• No closed-form solution for the integral of the normal distribution exists so it is
common to use tabulated results of the standard normal distribution N (0, 1) in its
CDF form �(x) found in Appendix A.

• Annualized probability of exceedance curves is regularly generated using the log-
normal distribution andwhenmultiplied by consequences can give annualized risk
values to compare with other risks.

Reference

Ang,A.H.-S.,&Tang,W.H. (2007).Probability concepts in engineering: Emphasis on applications
to civil and environmental engineering (2nd ed.). New York: Wiley.
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Chapter 5
Functions of Random Variables: Error
Propagation

This chapter contains the core of engineering risk analysis, the central theme about
which the rest of the material pivots. In Civil Engineering almost all designs involve
some calculation using an equation that is based on the physics of the problem, empir-
ical data of the phenomenon, or a combination of the two (often called semi-empirical
equations). The parameters in these equations are routinely treated as deterministic
and it is common to use mean or median values for calculation purposes. But if we
treat these parameters as random variables and propagate the uncertainty through
the equations we get a much better understanding of the most likely answer, as well
as an understanding of how much confidence we should have in that most likely
answer. Through this process of error propagation we fully characterize the prob-
lem by accounting for the uncertainty of the input variables and their mathematical
interrelationship as described in the engineering equation. This sets the stage for
determining how accurate the answer is, how much confidence we can have in the
mean or median, and how best to proceed to ensure a reliable engineering design.

The phrase functions of random variables can be defined as “equations, formula,
or mathematical models that contain parameters with uncertainty.” The application
of this can be demonstrated through the following simple example. Let’s say we have
the following equation:

z = x + y

If the input parameters are treated as deterministic, meaning they have no uncer-
tainty or more likely they have uncertainty but it is neglected, then we can simple
add the values to determine the results. Let’s say that x = 5 and y = 4, then the
solution is z = 9. But if we include the uncertainty of the parameters, treating them
as random variables, and the probability distributions of the random variables are
similar to those shown in Fig. 5.1, then the solution is not evident. How do we sum
the discrete distribution of X and the continuous distribution of Y to get the resultant
distribution of Z? Should the resultant distribution be discrete or continuous? How
are the probabilities combined?
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= ?

Fig. 5.1 A function of random variables, Z = X + Y

It turns out that the solution depends on:

(a) The type of mathematical function,
(b) The specific distributions of the random variables, and
(c) How much information we need of the resultant.

There are three groups of solutions for functions of random variables depending
on the answers to a, b, and c above. The three groups are:

1. Exact solutions,
2. Approximate solutions, and
3. Computational solutions.

The box below shows how these three groups map out as presented in the subse-
quent discussion.

5.1 Exact Solutions

Exact solutions will provide the full distribution of the resultant but only work when
wehave a simple function or a special case. Simple functions are one-to-one functions
with a single root. Special cases are when the function is (1) a sum or difference of
normally distributed random variables or (2) a product or quotient of lognormally
distributed random variables.
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5.1.1 Simple Function

An example of a one-to-one function with a single root is:

Y = X2 where x ≥ 0

In this example there is a direct relationship between the probability of X and the
resulting probability of Y. Take the values given in the table below. If we map this
we see the direct relationship.

x P(x) y P(y)

1 0.25 1 0.25

2 0.50 4 0.50

3 0.25 9 0.25

4 0 16 0

For simple functions such as this there is a one-to-one relationship of probability,
p(y) = p(x). If we had a continuous number then f (y) = f (x). The CDFs would
follow accordingly. Unfortunately there are few situations in engineering where we
are working with a simple one-to-one function with a single root.
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5.1.2 Special Cases

The special cases are a byproduct of the properties of the normal distribution. The
first special case is a function that is a sum or difference of normally distributed
random variables. If we return to the function we were initially evaluating:

Z = X + Y

But now X and Y are normally distributed random variables with their respective
moments, N (μxσx ) and N

(
μyσy

)
, then:

μz = μx + μy (5.1)

From this it can be said that “the mean of the sums is the sum of the means.” The
squared second moment is:

σ 2
z = σ 2

x + σ 2
y + 2ρσxσy (5.2)

These results show that the resultant Z is a normally distributed random variable
with moments, N (μz, σz). If the random variables of the input parameters are sta-
tistically independent, that is ρ = 0, then the squared second moment (a proof be
found in detail in Appendix B) reduces to:

σ 2
z = σ 2

x + σ 2
y (5.3)

So when the input parameters are normally distributed and the function is a sum
we see the solution is simply the sum of the means and the sum of the variances. We
can expand this to any number of random variables along with their coefficients to
broaden the application to any sum or difference of Gaussian random variables.

Z =
n∑

i=1

ai Qi (5.4)

where the a’s are coefficients (fixed deterministic values) and the Q’s are normally
distributed random variables. Then generically:

μz =
n∑

i=1

aiμQi (5.5)

σ 2
z =

n∑

i=1

a2i σ
2
Qi

+
n∑

i, j=1

n∑

i �= j

aia jρQi Q j σQi σQ j (5.6)
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Note when we have a difference equation the coefficient of −1 is squared in the
first term and becomes a +1 having no effect, but does influence the second term
that accounts for the correlation. The 2 that we see in front is because of the double
sum of the i’s and j’s (e.g., when there are 2 terms we would see the combinations
of 1,2 and 2,1 giving us the factor of two in the double sum). If the random variables
are statistically independent, that is ρ = 0, then the double sum goes to zero and we
are left with:

σ 2
Z =

n∑

i=1

a2i σ
2
Qi

(5.7)

Notation Clarity
Depending on how i’s and j’s are treated will dictate how the variance can be
written. The following are all equivalent notations resulting in the exact same
solution for the squared second moment. The first is the most concise while
the third is the most explicit.

σ 2 =
n∑

i=1

n∑

j=1

aia jρi jσiσ j (5.8a)

σ 2 =
n∑

i=1

a2i σ
2
i +

n∑

i, j=1

n∑

i �= j

aia jρi jσiσ j (5.8b)

σ 2 =
n∑

i=1

a2i σ
2
i + 2

n∑

i=1

n∑

j=i+1

aia jρi jσiσ j (5.8c)

The second special case is where the function is a product or quotient of lognor-
mally distributed random variables. This is because when we take the natural log
of a product we have the sum, or when we take the natural log of a quotient we
have the difference. And the sum or difference will be of a log transformed normal
distribution.

Z = X · Y becomes lnZ = lnX + lnY whenwe log both sides.

Z = X/Y becomes lnZ = lnX − lnY whenwe log both sides.

Where: lnX is N (μX , σX ) and X is LN(λX , ξX )

lnY is N (μY , σY ) and Y is LN(λY , ξY )

Therefore: lnZ is N (μZ , σZ ) and Z is LN(λZ , ξZ )
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We are now back to a sum or difference of normally distributed random variables.
When we have the product of X and Y which are lognormally distributed random
variables the first and second moments are:

λZ = λX + λY (5.9)

ξ 2
Z = ξ 2

X + ξ 2
Y + 2ρξXξY (5.10)

And when the random variables are statistically independent:

ξ 2
Z = ξ 2

X + ξ 2
Y (5.11)

This can be similarly expanded for any number of random variables with coeffi-
cients in the same manner as with normally distributed random variables, using the
same equivalent notation as presented in Notation Clarity.

Example: Waste Treatment Facility
The annual operating cost function for waste treatment plants can be written:

C = WF√
E

where W is waste, F is the cost factor, and E is efficiency on an annualized
basis. All these parameters are treated as lognormal random variables in this
problem, LN(λ, ξ).

Median value Coefficient of variation (%)

W 2000 metric tons/year 20

F $20/metric ton 15

E 1.6 12.5

With the given information, what is the probability that the cost will be
greater than $35,000 and the waste contractor must make financial contingency
plans for the year?

Because the function is a product/quotient and the random variables are
lognormal we can use an exact solution. We first solve for the moments of C.
Taking the natural log of both sides of the function:

lnC = lnW + lnF − 1

2
lnE

λC = λW + λF − 1

2
λE
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= ln2000 + ln20 − 1

2
ln1.6 = 10.36

ξ 2
C = ξ 2

W + ξ 2
F +

(
−1

2

)2

ξ 2
E

= (0.20)2 + (0.15)2 +
(

−1

2

)2

(0.125)2 = 0.067

ξC = √
0.067 = 0.259

Now that we have the moment of C we can evaluate the probability of
exceedance.

P(C > 35,000) = 1 − P(C ≤ 35,000) complement

= 1 − �

(
ln35,000 − λC

ξC

)
asC is LN(λC , ξC)

= 1 − �(0.398) ∼= 1 − 0.655 = 0.345

There is roughly a 35% chance that the annual cost will exceed $35,000.
The waste contractor would most likely prepare for a cost overrun given these
odds. If the decision was close the contractor may want to spend more time on
the probability analysis by investigating the distributions of the independent
variables.

In summary, for the special cases of sum/difference of normally distributed ran-
dom variables, and product/quotient of lognormally distributed random variables
we can solve for the full distribution of the resultant. And in the situation where
we have a simple one-to-one function with a single root we can also solve for the
full distribution of the resultant. These are the two situations where we have exact
solutions.

If, however, we have a function or random variables that don’t fit these cases
(which is typical in Civil Engineering) then we must resort to other solution
techniques.
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5.2 Approximate Solutions

There are two common approximate solutions. The first invokes the central limit
theorem (CLT), and the second uses a Taylor series expansion.

5.2.1 Central Limit Theorem Approximation

The central limit theorem states that the sum of a large number of individual random
components, none of which are significantly more dominant than the others, tends
toward a Gaussian distribution as the number of components increases. This holds
true regardless of the underlying distribution of the individual components. This
would then give us similar results as the sum/difference of normally distributed
random variables:

Z =
n∑

i=1

ai Qi (5.12)

μZ ≈
n∑

i=1

aiμQi (5.13)

σ 2
Z ≈

n∑

i=1

a2i σ
2
Qi

+
n∑

i, j=1

n∑

i �= j

aia jρQi Q j σQi σQ j (5.14)

As i → ∞ then Z approaches the normal distribution, N (μz, σz), even if the Q’s
are not normally distrusted. The drawback with this approximation is that we don’t
know how large i needs to be to give a good approximation, and it requires validation
in most cases.

Example: Linear Equation
The equation below is a sum of random variables (some with negative coeffi-
cients) and the specified correlation.

Y = V − T + G − Q where ρVT = 0.5

Invoking the central limit theorem to approximate themoments of the depen-
dent variable:

μY ≈ μV + (−1)μT + μG + (−1)μQ

σ 2
Y ≈ σ 2

V + (−1)2σ 2
T + σ 2

G + (−1)2σ 2
Q + 2(1)(−1)0.5σVσT
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The assumption with this solution is that the dependent variable is Gaussian
with the above moments.

5.2.2 First Order Second Moment

Amore verifiable solution is what is called the mean value first order secondmoment
ormore simply the first order secondmoment (FOSM) approach. This solutionworks
for any type of function and with variables of any distribution. The drawback is that
we can only solve for the first and second moments, and not the full distribution.

With thismethodwe can find themoments of any functional form ormathematical
equation g(X) of a random variable X. If we say that:

Y = g(X) (5.15)

Then the first and second moments would be:

E(Y ) =
∞∫

−∞
g(X) · f (x)dx (5.16)

Var(Y ) =
∞∫

−∞
[g(x) − μx ]

2 · f (x)dx (5.17)

To solve for the mean and variance of X we need the PDF f (X). But in many
cases the PDF is not available or assuming a PDF introduces too much epistemic
uncertainty, which lends to an approximate solution for the mean and the variance.
To approximate the moments we expand the function in a Taylor series about the
mean value of X:

g(X) = g(μX ) + (X − μX )
dg

dX
+ 1

2
(X − μX )2

d2g

dX2
+ · · · (5.18)

where the derivatives are also evaluated at the mean value of X. It is common to
truncate the series above the linear terms thereby giving a first order approximate of
the moments:

g(X) ≈ g(μX ) + (X − μX )
dg

dX
(5.19)

E(Y ) = μY ≈ g(μx ) (5.20)
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Var(Y ) = σ 2
Y ≈ σ 2

X

(
dg

dX

)2

(5.21)

The first order approximate will provide reasonable accuracy in situations where
the function is not highly nonlinear and in situations where the variance is not large.
If more accuracy is warranted a second order approximation can be carried out using
higher order terms in the Taylor series expansion. Here we reevaluate the mean using
a second order approximate:

E(Y ) ≈ g(μx ) + 1

2
σ 2
X

d2g

dX2
(5.22)

In most Civil Engineering problems a first-order (FOSM) estimate is sufficient
for quantifying the mean and standard deviation. We can expand this discussion to
include multiple random variables:

Y = g(X1, X2, . . . , Xn) (5.23)

E(Y ) = μY ≈ g
(
μX1 , μX2 , . . . , μXn

)
(5.24)

Var(Y ) = σ 2
Y ≈

n∑

i=1

σ 2
Xi

(
∂g

∂Xi

)2

+
n∑

i, j=1

n∑

i �= j

ρXi X j σXi σX j

∂g

∂Xi

∂g

∂X j
(5.25)

When the random variables, X’s, are statistically independent, that is ρ = 0, then
the double sum goes to zero and we are left with:

Var(Y ) = σ 2
Y ≈

n∑

i=1

σ 2
Xi

(
∂g

∂Xi

)2

(5.26)

If a higher order estimate of the mean for multiple random variables is desired,
the second-order Taylor series expansion takes the form:

E(Y ) = μY ≈ g
(
μX1 , μX2 , . . . , μXn

) + 1

2

n∑

i=1

n∑

j=1

ρi jσXi σX j

(
∂2g

∂Xi∂X j

)
(5.27)

If the independent variables are uncorrelated then Eq. (5.27) reduces to:

E(Y ) = μY ≈ g
(
μX1 , μX2 , . . . , μXn

) + 1

2

n∑

i=1

σ 2
Xi

(
∂2g

∂X2
i

)
(5.28)
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Example: Equation of a Line
In this example wewill evaluate the equation of a line where the parameters are
all random variables with their respective means and standard deviations. This
would be the case if we performed a linear regression while keeping track of
the uncertainty in the input data and the slope and intercept terms. Here we will
assume that the random variables are statistically independent but that would
obviously not be the case for the slope and intercept terms. Using FOSM to
approximate the moments of the dependent variable:

y = m · x + b

μy ≈ μm · μx + μb

σ 2
y ≈ σ 2

m

(
∂y

∂m

)2

+ σ 2
x

(
∂y

∂x

)2

+ σ 2
b

(
∂y

∂b

)2

where
∂y

∂m
= x,

∂y

∂x
= m,

∂y

∂b
= 1

σ 2
y ≈ σ 2

m(x)2 + σ 2
x (m)2 + σ 2

b

≈ σ 2
m · μ2

x + σ 2
x · μ2

m + σ 2
b about themean

One benefit of performing FOSM is that it provides a sensitivity analysis on the
function and how the uncertainty of the variables individually influences the resultant.
If we look at the variance of a function of randomvariableswe see that the uncertainty
from the input parameter propagates to the resultant as the product of the variance
and the squared partial derivative of the function with respect to the input parameter.
The variance of the input parameter is weighted according to how it participates in
the mathematics of the function. When divided by the total resultant uncertainty this
provides the percent relative contribution to variance (RCV%) from each random
variable:

RCV% = σ 2
Xi

(
∂g

∂Xi

)2

/σ 2
Y (5.29)

Example: Manning’s Equation
Manning’s equation is an empirical equation that is used to determine the
velocity (V ) in meters per second of uniform flow in an open channel:
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V = R2/3S1/2

n

where:
R = hydraulic radius (m)
S = slope of the energy line (%)
n = empirical roughness coefficient of the channel.

If the channel is an open concrete rectangular section the mean values and
coefficients of variation of the variables are:

Variable μ δ

R 2 m 0.05

S 1% 0.10

n 0.013 0.10

If we assume the variables are statistically independent, then the FOSM
solution of the mean and variance is:

μV ≈ μ
2/3
R μ

1/2
S

μn
= (2)2/3(1)1/2

0.013
= 122.108mps

σ 2
V ≈ σ 2

R

(
2

3

μ
−1/3
R μ

1/2
S

μn

)2

+ σ 2
S

(
1

2

μ
2/3
R μ

−1/2
S

μn

)2

+ σ 2
n

(

−μ
2/3
R μ

1/2
S

μ2
n

)2

= (2 × 0.05)2
(
2

3

(2)−2/3(1)1/2

0.013

)2

+ (1 × 0.01)2
(
1

2

(2)2/3(1)−1/2

0.013

)2

+ (0.013 × 0.10)2
(

− (2)2/3(1)1/2

(0.013)2

)2

= (0.01 × 2485.052) + (0.01 × 3727.576) + (0.0000169 × 88,226,676.230)

= 24.851 + 37.276 + 149.103 = 211.229

σ ≈ √
211.23 = 14.534

For this problem the relative contribution to the total variance (RCV%) is:
R of 11.76%, S of 17.65%, and n of 70.59%. It can be seen that the uncertainty
in the input roughness coefficient, n, has the largest impact on the total uncer-
tainty of the resultant velocity, V. This relative uncertainty impact is commonly
expressed through a sensitivity study. Each variable within a function is varied
about its mean by plus/minus one standard deviation (±sigma), and the effect
on the dependent variable is then shown as a “tornado” plot. Visually we see
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how the uncertainty of the roughness coefficient, n, has the most influence on
the resultant velocity, V, in this problem.

To check the accuracy of the solution we can evaluate the second-order
approximation of the mean velocity, V, following Eq. (5.28):

μV ≈ μV + 1

2

[

σ 2
R

(

−2

9

μ
−4/3
R μ

1/2
S

μn

)

+ σ 2
S

(

−1

4

μ
2/3
R μ

−3/2
S

μn

)

+σ 2
n

(

2
μ
2/3
R μ

1/2
S

μ3
n

)]

= 122.11 + 1

2

[
(2 × 0.05)2

(
−2

9

(2)−4/3(1)1/2

0.013

)

+(1 × 0.01)2
(

−1

4

(2)2/3(1)−3/2

0.013

)
+ (0.013 × 0.10)2

(
2
(2)2/3(1)1/2

(0.013)3

)]

= 122.108 + 1

2
[−0.068 − 0.305 + 2.442] = 123.142

The first-order estimate is less than 1% lower than the second order estimate,
providing confidence in the approximate solution of this problem.

In summary, for situations that don’t lend to an exact solution we can approximate
the solution using the two methods: CLT and FOSM. The central limit theorem
approach is limited to a sum/difference function and the resultant distribution is
assumed normal, but not verified.
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The first order second moment approach works for any type of mathematical
function with random variables of any distribution. FOSM is an extremely versatile
approach and works when the moments are sufficient information to proceed with
the problem. For most Civil Engineering problems this is adequate, therefore FOSM
is the “workhorse” of propagating uncertainty.

A means of confirming the approximate solutions and providing confidence in
the answer is a computational solution as discussed in the next section.

5.3 Monte Carlo Simulations

Monte Carlo (MC) simulations are a “brute force” computation approach to solve
probabilistic problems. MC simulations are used in a wide variety of fields, and
not restricted to probability problems, giving rise to a vast depth of literature on
different sampling techniques, computational efficiency, and numerical algorithms
(e.g., Ripley 1987). For our purposes we will be using MC simulations for functions
of random variables to complement the exact or approximate solutions.

The term Monte Carlo comes from the casino in Monaco and is named thus
because the method relies on a random simulation of outcomes similar to the process
of gambling. In order to solve the simple sumproblem thatwas posed at the beginning
of the chapter with a Monte Carlo simulation we

• randomly simulate a realization from the discrete distribution of X,
• randomly simulate a realization from the continuous distribution of Y,
• add the two realizations together as this particular mathematical function calls for,
which produces a realization of Z,

• then repeat this process many many times to characterize the full distribution of
Z.

We are in essence discretizing the entire problem, generating histograms of the
input parameter distributions, and carrying out the function’s mathematics a very
large number of times until we have fully developed the resultant distribution.



www.manaraa.com

5.3 Monte Carlo Simulations 75

With rapid computational speeds and pre-programmed probability distributions
we can accomplish 10,000–1,000,000 simulations in fractions of a second. The resul-
tant distribution is an approximation of the answer but as the number of simulations
becomes large the line between approximate and exact becomes blurred, dictated by
machine precision or machine epsilon.

Generating random realizations can be accomplished using any number of com-
putational programs (e.g., MATLAB, R, Mathcad, Excel). In this text we will be
focusing on MATLAB and R because of its ease and capabilities in simulating num-
bers, but the discussions pertain to any similar computational program.

There is an entire body of literature that discusses how to generate a random
number based on a fixed computer algorithm (e.g., Knuth 1997), which is an inher-
ently contradictory problem. For our purposes we assume that the random number
generated is random enough for our calculations.

The best way to discuss Monte Carlo simulations methods is through example.

Example: Sum of Lognormals
We need to analyze the sum function:

S = X1 + X2 + X3

If the input parameters were normally distributed then we could use an
exact solution, but in this problem we are given that the input parameters are
lognormally distributed, Xi are LN(λi , ξi ). The sum of lognormal variables
does not produce a lognormal resultant.

We can use FOSM to approximate the moments of S, given the moments of
the Xi . We can also use Monte Carlo simulations, and then compare the results
of the two methods. The information given for the Xi :

X1 X2 X3

μ 500 600 700

δ 0.50 0.60 0.70

Since no correlation coefficient is given we assume that the Xi are statisti-
cally independent.

FOSM gives (which is the same answer arrived at using CLT approxima-
tion):

μS ≈ μX1 + μX2 + μX3 = 500 + 600 + 700 = 1800
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σ 2
S ≈ σ 2

X1

(
∂g

∂X1

)2

+ σ 2
X2

(
∂g

∂X2

)2

+ σ 2
X3

(
∂g

∂X3

)2

= σ 2
X1

× 1 + σ 2
X2

× 1 + σ 2
X3

× 1

≈ (500 × 0.50)2 + (600 × 0.60)2 + (700 × 0.7)2 = 432,200

σS ≈ √
432,200 = 657

MCsimulations can be performed usingMATLABwith the followingm-file
to carry out the simulations:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Using MC simulations on S=X1+X2+X3 where X's are LN

%first we need to calculate the moments of the 
%lognormal distributions from their given means and 
%coefficients of variations

xsi_1=sqrt(log(1+0.5^2));
lambda_1=log(500)-0.5*(xsi_1)^2;

xsi_2=sqrt(log(1+0.6^2));
lambda_2=log(600)-0.5*(xsi_2)^2;

xsi_3=sqrt(log(1+0.7^2));
lambda_3=log(700)-0.5*(xsi_3)^2;

%next we simulation the 3 lognormal random variables 
n=10000; %number of simulations

x1=lognrnd(lambda_1,xsi_1,n,1);
x2=lognrnd(lambda_2,xsi_2,n,1);
x3=lognrnd(lambda_3,xsi_3,n,1);

%then we perform the calculation sequentially
s=x1+x2+x3;

%Results
hist(s,50) %the discrete results of n simulations
x_bar=mean(s) %sample mean value of n simulations
s=std(s)  %sample standard deviation of n simulations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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x_bar=1.7942e+03
s=660.2819

The histogram shows a skewed distribution but if wewere to test it wewould
find that it does not exactly follow the lognormal distribution (It is beyond the
scope of this text but the Gamma distribution is often useful for modeling a
skewed distribution like the results here.).

Results will vary slightly for each run of the subroutine, even with the same
number of simulations, because the realizations are randomly generated. But
as we approach a large number of simulations the results will converge. This is
a way of determining the accuracy of the simulations. The figure below shows
the change in the sample mean as the number of simulations is increased.
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We can see that in this problem the answer converges around 100,000 (1.E+
05) to 1,000,000 (1.E + 06) simulations. The computational cost of increased
simulations is measured in runtime, where it took 0.050 s to generate 100,000
simulations compared to 0.284 s for 1,000,000 simulations. Both runs are
nominal computationally, but if we increase the simulations in this problem up
to 10,000,000 (1.E+ 07) the run time is 2.370 s, a noticeable delay for the user.
Of course the run timewill increase with more complex problems/calculations,
and more efficient programming can help decrease runtime.

If we compare the MC simulations with the FOSM approximations we find
there is good agreement which provides confidence in our answer. This also
demonstrates that for linear functionswith input parameters that have relatively
symmetric distributions, FOSM can often give accurate results.

FOSM MC (1.E ± 07) simulations

μ = 1800 x_bar=1800

σ = 657 s=657

It is common to use both an approximate and computational method to
provide confidence in the answer and to tease out if there is any nonlinearity
or other aspects contributing to the results.
Solving the same sum of lognormal problem with coding in R:

means <-c(500,600,700) #vector of means
coefv <- c(0.5,0.6,0.7) #vector of coefficents of variations
sd <- means*coefv #R defaults to elementwise, not matrix, operations
n <- 10000 
xi_sq <- log(1+sd^2/means^2) 
lambda <- log(means) - 1/2*xi_sq #lognormal parameters 
xi <- sqrt(xi_sq) 
s <- matrix(nrow = n, ncol = 3) 
for (i in 1:3) 
  s[,i] <- rlnorm(n, lambda[i], xi[i]) #generate random values of s
sum <- s[,1] + s[,2] + s[,3] #add values together 
mean(sum) 
sd(sum) 
hist(sum,50) 

This produces a similar answer as the code in MATLAB, and as the number
of simulations (n) increases the answers converge.
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Example: Product/Quotient of Normals
In this problem we will be evaluating the function:

P = X1X3

X2

The random variables in this function are all normally distributed with their
respective moments, Xi are N (μi , σi ). Note, if these were all lognormally dis-
tributed then we could solve using an exact solution, the product/difference of
lognormals. Since they are normally distributed we must resort to an approxi-
mate solution and/or MC simulations. The information given for the Xi are:

X1 X2 X3

μ 500 600 700

σ 75 120 210

No correlation coefficient was given so, as before, we will assume that the
variables are statistically independent.

The FOSM approximate of this is:

μP ≈ μX1μX3

μX2

= 583

σ 2
P ≈ σ 2

X1

(
X3

X2

)2

+ σ 2
X2

(
− X1X3

X2
2

)2

+ σ 2
X3

(
X1

X2

)2

≈ 752
(
700

600

)2

+ 1202
(

−500 × 700

6002

)2

+ 2102
(
500

600

)2

= 51,892.36

σP ≈ 227.8

If we now wanted to know the probability that P would exceed 700, then
we could approximate the probability using the standard normal distributions.

P(P ≥ 700) = 1 − P(P ≤ 700) ≈ 1 − �

(
700 − 500

227.8

)
= 1 − 0.8105

≈ 0.1894 or roughly 19%
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Solving the problem using MC simulations in MATLAB the m-file looks
like:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Using MC simulations to solve P=(X1*X3)/X2 where X's 
%are normal

%first we declare the mean's and standard deviations 
mu_1=500;
sigma_1=75;

mu_2=600;
sigma_2=120;

mu_3=700;
sigma_3=210;

%next we simulate the normal random variables
n=10000;

x1=normrnd(mu_1,sigma_1,n,1);
x2=normrnd(mu_2,sigma_2,n,1);
x3=normrnd(mu_3,sigma_3,n,1);

%then we perform the calculation sequentially.  
%note: the dots in the equation specifies that linear, 
%not matrix, mathematics be carried out
p=(x1.*x3)./x2;   

%Results
hist(p,50)
x_bar=mean(p)
s=std(p)
prob=(sum(p>700))/n 

%note: because these are simulations we can sum all the 
%realizations that exceed the threshold of 700 and 
%divide by the total number of simulations n to 
%estimate the probability
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Results for (1.E + 07) simulations

x_bar=610.2443
s=261.0716
prob=0.3060

In this problem it is interesting to observe that the resultant distribution is
neither normal nor lognormal but something in between. Now comparing the
results of FOSM andMC simulations we find that in this case, with a nonlinear
equation, FOSM underestimates the mean, standard deviation, and probability
of exceedance. In this particular problem the MC simulations more accurately
model the interaction of the input parameter distributions and the functional
form of the equation.

FOSM MC (1.E + 07) simulations

μ = 583 x_bar=610.2

σ = 227.8 s=261.1

P(P ≥ 700) ≈ 19% prob=0.3060

The code for solving this same problem in R can be written as follows:
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means <-c(500,600,700) #vector of means 
sds <- c(75,120,210) #vector of standard deviations
n <- 10000 #number of simulations
x <- matrix(nrow = n, ncol = 3) 
for (i in 1:3) 
  x[,i] <- rnorm(n, means[i], sds[i]) #generate random values of x
p <- x[,1]*x[,3]/x[,2] #elementwise addition
hist(p,50) 
mean(p) 
sd(p) 
sum(p>700)/n 

As has been demonstrated, MC simulations for statistically independent random
variables are relatively straightforward. When random variables are correlated we
need to generate joint distributions to account for that correlation.

The joint distribution of two variables can be written with the multiplication
rule, here using CDF’s:

F(xy) = F(y|x)F(x) (5.30)

Ifwe have themarginal distribution ofX and the conditional distribution ofY given
X, then we can solve for the joint distribution. Computationally the joint distribution
can be found using the algorithm presented in Ang and Tang (1984) for two random
variables:

(1) Generate two uniformly distributed vectors, u1 and u2, between 0 and 1.
(2) Random variable X is generated as the inverse CDF of the first uniformly dis-

tributed random vector: X = F−1(u1).
(3) Random variable Y is generated as the inverse CDF of the second uniformly

distributed random vector conditioned on X: Y = F−1(u2|x).
This algorithm applies to any joint distribution and many inverse CDF’s are pre-

programmed into computational software (e.g., normal, lognormal, Gamma, Beta).
For joint distributions that are not pre-programmed the inverse CDF must be solved
symbolically. This can be accomplished using MATLAB or R but lies outside the
scope of this text and readers are referred to Ang and Tang (2007) for more details.
For joint normal the distributions of Gaussian X and Y |X are:

X = �−1(u1)σX + μX (5.31)

Y = �−1(u2)σY

√
1 − ρ2 +

(
μY + ρ

(
σY

σX

)
(x − μX )

)
(5.32)

The following example illustrates this calculation in MATLAB and R.
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Example: Joint Normals
In this problem we are evaluating the function:

SQ = X − Y

where X and Y are assumed jointly normal and negatively correlated. We can
solve this using an exact solution and then verify using MC simulations. The
statistics provided for the input parameters are:

X Y

x̄ 500 600

s 250 360

ρ −0.33

An exact solution produces:

μSQ = μX + μY = 500 + (−600) = −100

σ 2
SQ = a2Xσ 2

X + a2Yσ 2
Y + 2ρaXaYσXσY

= (1)22502 + (−1)23602 + 2(−0.33)1(−1)250(360)

= 62,500 + 129,600 + 59,400 = 251,500

σSQ =
√
251,500 = 501.5

If we are interested in the probability that SQ will exceed 500, following
the exact solution we find:

P(SQ > 500) = 1 − P(SQ ≤ 500) = 1 − F(500)

= 1 − �

(
500 − (−100)

501.5

)
≈ 1 − 0.8842 = 0.1158

The solution using MC simulations uses the following MATLAB script:
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Using MC simulations to solve SQ=X-Y  
%where X and Y are jointly normal and correlated

%first we declare the knowns
mu_x=500;
sigma_x=250;

mu_y=600;
sigma_y=360;

rho=-0.33;

%next we simulate the uniformly distributed vectors
n=1000000;
u1=unifrnd(0,1,n,1);
u2=unifrnd(0,1,n,1);

%then we generate the normal distribution of X
x=(norminv(u1).*sigma_x)+mu_x;

%and the conditional distribution of Y given X that 
%includes correlation
y=(norminv(u2).*sigma_y.*sqrt(1- 
   rho^2))+(mu_y+rho*(sigma_y/sigma_x).*(x-mu_x));

%now evaluating the function
sq=x-y;

%Results
hist(sq,100);
x_bar=mean(sq)
s=std(sq)
prob=(sum(sq>500)/n) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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x_bar=−99.9253
s=501.6675
prob=0.1156

The histogram shows a normally distributed resultant as would be expected
when we have the difference of normal distributions. Comparing the numeric
results, we see that MC simulations provide a very close answer to the exact
solution. This provides a check on our work and confidence in moving forward
with the probability of exceedance for decision purposes.

Exact MC simulations

μ = −100 x_bar=−99.9253
σ = 501.5 s=501.6675

P(SQ > 500) ≈ 11.58% prob=0.1156

The above code can be written using the multivariate function, which elim-
inates the need for explicitly generating the uniformly distributed random vec-
tors.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Using MC simulations to solve SQ=X-Y where X and Y are 
%jointly normal with prescribed correlation coefficient

%declare the means and standard deviations
mu_x=500;
sigma_x=250;

mu_y=600;
sigma_y=360;

rho=-0.33;

%setting up the means vector and covariance matrix
mu_vector=[mu_x mu_y]; 
%see Appendix C for discussion of the covariance matrix
cov_matrix=[sigma_x^2           rho*sigma_x*sigma_y ;  
            rho*sigma_x*sigma_y           sigma_y^2];

%simulate the joint normal distribution
n=1000000;
xy=mvnrnd(mu_vector,cov_matrix,n);

%evaluate the function
sq=xy(:,1)-xy(:,2);

%Results
hist(sq,100);
x_bar=mean(sq)
s=std(sq)
prob=(sum(sq>500)/n)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The results using the multivariate function (mvnrnd) provides nearly iden-
tical results as before.

Exact MC simulations

μ = −100 x_bar=−99.9746
σ = 501.5 stdev=502.0354

P(SQ > 500) ≈ 11.58% prob=0.1159

Solving this problem in R could result in the following code:
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library(MASS) #this must be installed to include multivariate normal function 
#if not, install using install.packages(MASS) 
means <-c(500,600) #vector of means
cov <- matrix(c(250^2, -0.33*250*360,-0.33*250*360,360^2),2,2) #covariance 
matrix 
n <- 10000 #number of simulations
u <- mvrnorm(n,means,cov) #simulate correlated variables
SQ <- u[,1]-u[,2] 
hist(SQ,100) 
mean(SQ) 
sd(SQ) 
sum(SQ>500)/n 

For jointly lognormal parameters the algorithm using uniformly distributed ran-
dom variables can be similarly used to solve problems. MATLAB does not currently
support amultivariate lognormal function at the time ofwriting, however one is avail-
able in the user forum which performs the desired correlated lognormal simulation.1

In summary, the discussion of computational methods, by using Monte Carlo
simulationswe cangenerate sequential realizations of the randomvariables of interest
and plug those realizations into the function we are evaluating. This provides a
simulation as accurate as needed to solve any function of random variables. The
normal and lognormal distributions are easy to simulate because these distributions
are pre-programmed into computational software. Monte Carlo simulations provide
a means of checking approximate solutions and can often be used to tackle more
complex functions with difficult partial derivatives that can render FOSM intractable.

5.4 Chapter Summary

• Solving a function of random variables is the core material of this text. In almost
all Civil Engineering problems we are using somemathematical equation made up
of parameters that contain uncertainty. Translating or propagating this uncertainty
from the input parameters to the resultant gives us a measure of how accurate the
solution is.

1http://www.mathworks.com/matlabcentral/fileexchange/6426-multivariate-lognormal-
simulation-with-correlation accessed 12/17/2018.

http://www.mathworks.com/matlabcentral/fileexchange/6426-multivariate-lognormal-simulation-with-correlation
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• Exact solutions exist for one-to-one single root functions, for a function that is
the sum/difference of normally distributed random variables, and for a function
that is the produce/difference of lognormally distributed random variables.

• For situations that don’t fit the exact solutionswe can use approximation methods
and/or Monte Carlo (MC) simulations.

• Two approximate methods presented are the central limit theorem (CLT) and the
first order second moment (FOSM) methods.

• CLT assumes the resultant is normal given a large number of input parameters in
a sum/difference function.

• FOSM uses a Taylor series expansion about the mean to estimate the moments
of a function given the moments of the input parameters. FOSM works on any
mathematical function with input parameters having any distribution.

• MC simulations use many realizations to estimate the resulting distribution.
• MC simulations methods are often used in conjunction with other methods to
validate the answer.
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Chapter 6
Component Reliability Analysis

Reliability at the component level is the probabilistic relationship between load and
resistance, or stress and strain, or demand and capacity; these paired terms are all
analogous. Reliability is commonly expressed using the reliability index, β, which
can in turn be related to the probability of failure, pf.

Figure 6.1 shows a deterministic view of an engineering problem. Load (Q) and
resistance (R) are shown on a number line with respect to each other. Whenever the
load is less than the resistance then the design is considered safe. Using a factor of
safety formulation where FS = R/Q, a “no failure” state is where FS > 1 when Q is
less than R. Using a margin of safety formulation where M = R − Q, a “no failure”
state is where M > 0 when Q is less than R.

When we include the uncertainty of the load and resistance in the analysis, as
Fig. 6.2 shows there may be a region where failure can occur. Using factor of safety
formulation, P(FS) = P(R)/P(Q), or margin of safety formulation, P(M) =
P(R) − P(Q), and the same mean values as in the deterministic view, if there is
sufficient uncertainty in the load and/or resistance then there is a probability of failure.

6.1 Component Reliability Formulation

The fundamental presentation of component reliability can be accomplished using
the margin of safety formulation and assuming that the load and resistance are jointly
normal.

Values of R and Q
Q R

Fig. 6.1 Deterministic view of load (Q) versus resistance (R)
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M = R − Q where R and Q are jointly normal (6.1)

μM = μR − μQ (6.2)

σ 2
M = σ 2

R + σ 2
Q − 2ρRQσRσQ (6.3)

β = μm

σm
(6.4)

The reliability index is the number of standard deviations the mean is away from
failure. For correlated R and Q, substituting from above:

β = μR − μQ√
σ 2
R + σ 2

Q − 2ρRQσRσQ

(6.5)

For statistically independent R and Q:

β = μR − μQ√
σ 2
R + σ 2

Q

(6.6)

The reliability index, β, is the distance between the mean and the failure point
M = 0 in units of standard deviation as shown in Fig. 6.3. It is a measure of how far
away the most likely value is from failure.

Q R
Values of R and Q

Frequency
of R and Q

Region where the load could
equal or exceed the resistance

Fig. 6.2 Probabilistic view of load (Q) versus resistance (R)

Fig. 6.3 Shown is the
distribution of M with the
probability of failure (pf) as
the region where M ≤ 0. The
distance between the failure
point, M = 0, and the mean
value (μ) is the reliability
index (β) in units of standard
deviation (σ ) M

f(M)

0

pf

βσ
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FS

f(FS)

1

pf

Fig. 6.4 Reliability using the factor of safety formulation

The area under the probability distribution f (M) where M ≤ 0 is the prob-
ability of failure; therefore, we are interested in the CDF to define the failure[
F(m) = ∫ 0

−∞ f (m) dm
]
. Since in this derivation Q and R are normally distributed

the margin of safety function is a sum of these variables, then M is normally dis-
tributed and we can use the standard normal distribution to solve this integral.

pf = F(M) = �

(
M − μm

σm

)
= �

(
0 − μm

σm

)

= �

(−μm

σm

)
= �(−β) = 1 − �(β) (6.7)

By assuming that the load and resistance are normal and that failure is defined
using themargin of safety formulationwe arrive at an exact solution for the reliability
index and the probability of failure. This is the most common and intuitive presen-
tation of the component reliability calculation. Note however if load and resistance
are not normal then this solution is not exact. Other solution methods exist when the
assumption of normality does not hold true.

Example: Exact Solution for Normals
To demonstrate reliability using an exact solution we will look at a slope
stability problem borrowed from Baecher and Christian (2003). This is called
the cut slope problem because we are interested in the stability of a vertical cut
in cohesive soil. Figure 6.4 shows the geometry. If we assume that the soil is
purely cohesive and that the slope will fail along a 45° failure plane (α) then
we can set up the load and resistance functions for solving the stability of this
slope. For this example the height will be a deterministic value fixed at 10 m.
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WH

α

Cut slope geometry shows H is the vertical height of the cut slope, α is the
angle of the failure plane, and W is the weight vector at the center of mass of
the potential failure wedge.
R = c cohesion of the soil
Q = 0.25γ H from 0.5γ H sin α cosα the solution for a 45° slope.

If c and γ are normally distributed then R and Q are normally distributed
because both are one-to-one functions of their independent variables. The first
and second moments and correlation coefficient for this problem are given as:

μc = 100 kPa σc = 30 kPa

μγ = 20 kN/m3 σγ = 2 kN/m3

ρcγ = 0.5

Solving for R and Q which are functions of the random variables c and γ :

μR = 100 kPa

σR = 30 kPa

μQ = 0.25

(
20

kN

m3

)
10 m = 50 kPa

σQ =
√

(0.25 × 10 m)2
(
2
kN

m3

)2

= 5 kPa

Because these are one-to-one functions relating the dependent and inde-
pendent variables then R and Q have the same correlation coefficient as c and
γ . Using the margin of safety formulation and having normally distributed
variables lends to the exact solution:

M = R − Q

μM = μR − μQ = 100 − 50 = 50 kPa
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σ 2
M = σ 2

R + σ 2
Q − 2ρRQσRσQ = 302 + 52 − 2(0.5)(30)(5)

= 900 + 25 − 150 = 775 kPa

β = μm

σm
= 50√

775
= 1.80

(i.e., the mean is 1.8 standard deviations from failure)

pf = 1 − �(β) = 1 − �(1.80) � 1 − 0.96407 = 0.03593

So given:

• The distributions and statistics of the independent variables c and γ ,
• The equations relating the independent variables to the dependent variables
R and Q, and

• The margin of safety formulation defining failure,

then the probability of failure for this problem is 3.6%. The correlation between
the cohesion and the density is physically obvious but let us assume that they
are not correlated (i.e., statistically independent where ρ = 0) to see how it
influences the probability of failure.

μM = μR − μQ = 100 − 50 = 50 kPa

σ 2
M = σ 2

R + σ 2
Q − 2ρRQσRσQ = 302 + 52 − 0

= 900 + 25 − 0 = 925 kPa

β = μm

σm
= 50√

925
= 1.64

(i.e., the mean is 1.64 standard deviations from failure)

pf = 1 − �(β) = 1 − �(1.64) � 1 − 0.949497 = 0.050503

The reliability index is lower and the probability of failure is higher for the
uncorrelated situation. Why is this? In a correlated situation the uncertainties
in the load and resistance are joint or interrelated, whereas the uncertainties
in the uncorrelated situation are independent resulting in larger uncertainty
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when propagated through the margin of safety equation and therefore a smaller
reliability index.

The reliability index decreases, and probability of failure increases, as the mean
moves closer to the failure point. The mantra “Bigger Beta is Better” is a useful one
to remember in engineering. It is common to design engineered features to have a
reliability index of 2–3 that is a design with the mean 2–3 standard deviations away
from the failure point. This concept will be discussed in more detail in the chapter
on reliability-based codes (Chap. 9).

6.2 Lognormal Parameters

An alternate exact solution exists if load and resistance are assumed lognormal (i.e.,
the natural log of load and resistance is normal) and the factor of safety formulation
is used to define failure (Fig. 6.5).

This formulation is used often for situations where the load and resistance are
both nonnegative, and historically was developed for steel construction.

FS = R/Q where R and Q are jointly normal (6.8)

By taking the natural log of both sides we find:

ln(FS) = ln (R) − ln (Q) (6.9)

λFS = λR − λQ (6.10)

ξ 2
FS = ξ 2

R + ξ 2
Q − 2ρln R ln QξRξQ (6.11)

β = λFS

ξFS
(6.12)

Fig. 6.5 For lognormal load
and resistance then the
natural log of the FS = R/Q
is normally distributed

ln(R/Q)

f(ln(R/Q))

0

pf
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pf = F(1) = �

(
ln (1) − λFS

ξFS

)
= �

(
0 − λFS

ξFS

)

= �

(−λFS

ξFS

)
= �(−β) = 1 − �(β) (6.13)

The reliability index can also be written as:

β = μln R − μln Q√
σ 2
ln R + σ 2

ln Q − 2ρln R ln Qσln Rσln Q

=
ln

(
μR

μQ

√
1+δ2Q

1+δ2R

)

√
ln

(
1 + δ2R

)
ln

(
1 + δ2Q

) − 2 ln
(
1 + ρRQδRδQ

) (6.14)

where the mean and standard deviation of the natural log are shown below for R, and
follow the same pattern for Q.

μln R = λR = lnμR − 1

2
ξ 2
R (6.15)

σ 2
ln R = ξ 2

R = ln

(
1 + σ 2

R

μ2
R

)
= ln

(
1 + δ2R

)
(6.16)

An approximation of the reliability index that is commonly used for the lognormal
case with given mean and coefficient of variations (Rosenblueth and Esteva 1972)
can be written as:

β �
ln

(
μR

μQ

)
√

δ2R + δ2Q − 2ρRQδRδQ

(6.17)

6.3 General Reliability Procedure

Most reliability problems require more sophisticated solutions because the distribu-
tions of load and resistance cannot be assumed to be normal (or lognormal). The
various solutions however all follow similar steps:

1. Determine the equations, formulas, models that will be used to calculate R and
Q. These can be empirical, theoretical, or approximate.

2. Calculate the first and second moments of R and Q. Mean and coefficient of
variation are often sufficient, but the full distributions can be used if available.
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3. In most cases the margin of safety formulation is used, M = R − Q so the first
and second moments ofM are calculated. Here the uncertainty from R andQ are
propagated toM.

4. Calculate the reliability index, β.
5. Calculate the probability of failure, pf.

The following is a list of common reliability solution techniques used in Civil
Engineering. The asterisk (*) indicates a method that is covered in this text.

• Exact solutions* as described above. These solutions are limited by the assumption
of normal or lognormal R and Q and the corresponding failure formulation.

• First order second moment (FOSM)* applies to any distribution of R and Q, but
is only approximate.

• Second order second moment (SOSM) has increased accuracy over FOSM, but
still an approximate.

• Point-Estimate is an interesting technique similar to Gaussian quadrature integra-
tion, but can be rather cumbersome in this age of fast computing (see Rosenbluth
1975; Baecher and Christian 2003).

• First Order Reliability Method (FORM)* is the “standard” of reliability analysis
and often considered requisite when doing probability of failure calculations.

• Second Order Reliability Method (SORM)* is particularly useful as the failure
surface becomes more nonlinear.

• Monte Carlo simulations (MC)* is the “brute force” approach that provides a
robust approximate, often used to confirm results found using other methods.

6.4 FOSM

First order second moment (FOSM) is the same error propagation technique pre-
sented for functions of random variables in Chap. 5. Here the function of interest is
the margin of safety formulation (or the factor of safety formulation) and the random
variables are R and Q. This solution works in any situation, but provides an approxi-
mate solution. As the functions of R andQ becomemore nonlinear the FOSM results
can diverge from the true results. The following example uses the same cut slope
problem but avoids the assumption of normally distributed R and Q.

Example: FOSM Solution

M = R − Q

where R = c and Q = 0.25γ H and H = 10 m therefore

M = c − 2.5γ
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μM = μc − 2.5μγ = 100 − 2.5(20) = 50

σ 2
M = σ 2

c

(
∂M

∂c

)2

+ σ 2
γ

(
∂M

∂γ

)2

+ 2ρσcσγ

∂M

∂c

∂M

∂γ

dM

dc
= 1

∂M

∂γ
= −2.5

σ 2
M = 302(1)2 + 22(−2.5)2 + 2(0.5)30(2)1(−2.5)

= 900 + 25 − 150 = 775

β = μm

σm
= 50√

775
= 1.80

pf = 1 − �(β) = 1 − �(1.80) � 1 − 0.96407 = 0.03593

For uncorrelated load and resistance:

σ 2
M = 302(1)2 + 22(−2.5)2 + 2(0)30(2)1(−2.5)

= 900 + 25 = 925

β = μm

σm
= 50√

925
= 1.64

pf = 1 − �(β) = 1 − �(1.64) � 1 − 0.949497 = 0.050503

Second order second moment (SOSM) takes the approximation further using the
second order expansion of the Taylor series. This may be more accurate for problems
where the second partial derivative of the R and Q have nonzero results.

It should be noted that FOSM (and SOSM by extension) involves some assump-
tions that can lead to inaccurate results. This was first shown by Hasofer and Lind
(1974), and more recently demonstrated using the cut slope problem by Baecher and
Christian (2003). The previous example shows the cut slope problem with uncorre-
lated load and resistance using the margin of safety formulation which results in a
FOSM-based reliability index of 1.64. The same problem using a factor of safety
formulation will give a FOSM-based reliability index of 1.58, even though M = 0
and FS = 1 are mathematically identical. This variability of FOSM-based results as
a function of the problem formulation leads researchers to investigate other invariant
solutions to the reliability problem.
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6.5 Monte Carlo Simulations

As with functions of random variables we can solve the margin of safety formulation
(or factor of safety formulation) usingMonteCarlo simulations. TheMATLAB script
for the cut slope problem is shown below.

Example: Monte Carlo Approximation

%uniformly distributed random numbers from 0 to 1
u1=unifrnd(0,1,10000,1);  
u2=unifrnd(0,1,10000,1);

%simulations of c
c=norminv(u1).*30+100; 
%simulations of Gamma given c
Gamma=(norminv(u2)).*(2).*(sqrt(10.50.^2))+((0.50).*(2/
30).*(c-100))+(20);  
%margin of safety
M=c-(Gamma.*(10/4));

%results
hist(M,100); 
x_bar=mean(M)
s=std(M)
Beta=x_bar/s
pf=normcdf(-Beta,0,1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%MC of vertical cut problem (correlated)

The results are shown below for the correlated example.
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x_bar = 49.9724
s = 27.7358
Beta = 1.8017
pf = 0.0358 
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200
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To run the simulations for the uncorrelated example can set the correlation
coefficient to zero in the previous script or rewrite the script in a much simpler
manner as shown below.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MC of vertical cut problem (uncorrelated normals)

c=normrnd(100,30,10000,1);
Gamma=normrnd(20,2,10000,1);

M=c-(Gamma.*(10/4));

hist(M,100);
x_bar=mean(M)
s=std(M)
Beta=x_bar/s
pf=normcdf(-Beta,0,1)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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And the results for the uncorrelated load and resistance are:

x_bar = 49.4460
s = 30.1155
Beta = 1.6419
pf = 0.0503

100 50 0 50 100 150 200
0

50

100

150

200

250

300

350

Note that the results vary depending on how many simulations we run. In
this example 10,000 simulations were run. As discussed previously we can run
the number of simulations high enough to minimize the error below a certain
acceptable tolerance. With Monte Carlo simulations we are estimating the
results; however given enough simulations the results become fairly accurate.

The vertical cut problem solved by coding in R looks like:
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6.6 FORM/SORM

Amore robust means of determining the probability of failure is using the geometric
approach of first order reliability method (FORM) and/or second order reliability
method (SORM). As discussed FOSM can give different results dependent on if the
problem is formulated using margin of safety or factor of safety. To avoid this the
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M=0

pf(M 0)

R’

Q’

M=0

pf(M 0)

Q

R

Fig. 6.6 Transforming to standard normal space, from (R, Q) to (R′, Q′)

Fig. 6.7 The reliability
index, β, is the minimum
perpendicular distance from
the origin to a straight line
tangent at M = 0

M=0

pf(M 0)

R’

Q’

β

Hasofer–Lind approach (Hasofer and Lind 1974) to FORM translates the problem
into standard normal space and then solves for the distance from the mean to the
point of failure, which is invariant regardless of how failure is formulated.

The Hasofer–Lind approach typically follows:

1. Formulate the problem as margin of safety, M = R − Q.
2. Transform from (R, Q) space into standard normal space (R′, Q′) as shown con-

ceptually in Fig. 6.6 (This transformation is a function of the joint distribution
of R and Q).

3. Findminimumdistance fromM = 0 to origin using a straight line fit at the tangent
point (see Fig. 6.7). This requires an iterative solutionwhich can be accomplished
using different approaches.

4. The reliability index is equal to the minimum distance to the tangent, β =
min(distance), and the probability of failure is the standard normal distribution
of the negative reliability index, pf = �(−β).
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Fig. 6.8 Cut slope problem with correlated load and resistance

SORM can provide a more accurate solution as it fits a curve instead of a straight
line to M = 0 when solving the minimum distance to the tangent (Der Kiureghian
et al. 1987). Both FORM and SORM require an iterative solution to determine the
minimum distance to the failure surface and the most efficient solutions use matrix
manipulations (e.g., Cholesky decomposition, Jacobian matrix, etc.). In Appendix C
the “improved” HLRF algorithm (Zhang and Der Kiureghian, 1995) is presented for
solving the cut slope problem using FORM.

To simplify the application of FORM/SORM and encourage practicing engineers
to use thesemethods, they have been written into Excel to take advantage of the built-
in matrix manipulation and iteration solver functions available in the spreadsheet
program. Low and Tang (1997) programed SORM into Excel utilizing the properties
of an ellipse and built-inmatrixmanipulation functions. These spreadsheet reliability
methods provide invariant reliability solutions that are readily applicable to Civil
Engineering problems.

Figures 6.8 and 6.9 show the cut slope problem solved using the Low and Tang
(1997) spreadsheet solution. Notes at the bottom of the spreadsheet describe the
solution method. Figure 6.10 shows the equations in each cell and how the Solver is
used to iteratively calculate the minimum reliability index. The ease of this solution
method renders reliability accessible to any practicing engineer with the interest in
performing reliability.
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Fig. 6.9 Cut slope problem with uncorrelated load and resistance

Other spreadsheet solutions exist and subsequent work has expanded these solu-
tions to accommodate many probability distributions and the transformation of those
distributions into standard normal space. For further reading the following references
are recommended; Low and Tang (2004), Phoon andNadim (2004), and Low (2005).

6.7 Limit State

Up to this point we have been discussing failure and defining failure primarily using
themargin of safety formulation.Howeverwemaybe interested not in outright failure
but some unsatisfactory performance that we would not necessarily label as failure
in the breaking, fracturing, or collapsing sense. In defining a performance criterion
in this manner it is then often called a limit state. The same mathematics and solution
techniques can be used to solve any limit state. We generalize the margin of safety
formulation to now encompass a threshold beyond which we can have unsatisfactory
performance. The limit state function is usually denoted by g and the independent
variables X where g ≤ 0 is unsatisfactory performance:

g = X1 − X2 (6.18)
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6.8 Chapter Summary

• Reliability is solving a specific function of random variables where the variables
are load and resistance and the function is commonly the difference of the two
(i.e., margin of safety formulation).

• Reliability is described by the reliability index, the number of standard deviations
away from failure.

• The reliability index can be related mathematically to the probability of failure.
• The solution techniques covered in the previous chapter (Chap. 5 Functions of
RandomVariables) can be applied in solving reliability problems; exact solutions
for normal and lognormal, approximate solutions using aTaylor series expansion,
and Monte Carlo simulations.

• Additionally, geometric solution techniques specific to reliability, FORM and
SORM, are used because they are invariant with respect to the function that relates
load and resistance.

• AsimplifiedSORMspreadsheet solution is presented tomake reliability accessible
without the need for a background in matrix mathematics.

• Reliability is generalized to the limit state formulation for solving problems
involving any unsatisfactory engineering performance, not just failure.

• In engineering the goal is to achieve a safe design that is also economical. The
reliability index (β) is the measure of how many standard deviations away from
failure the design is, therefore within the economic constraints of the project,
Bigger Beta is Better.
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Chapter 7
System Reliability Analysis

Component reliability was covered in Chap. 6, but we may often have a systemmade
of many components. To analyze a system we can generalize and expand the limit
state by consideringmultiple components andmultiple failures that define the system
[wewill be using the term failure as synonymous with any unacceptable performance
as defined by the limit state].

g = X1 − X2

where g ≤ 0 is failure or unsatisfactory performance

g j (X) = g(x1, x2, . . . , xn)

where j = 1, 2, . . . , k so there are k potential failures to evaluate.
If we restrict the system to just two independent variables and three limit states

[X = (x1, x2) and j = 1, 2, 3 where g j (X) = 0] we can visualize the multiple limit
states in standard normal space as shown in Fig. 7.1.

If the joint PDF of the independent variables is f (x1, . . . , xn) and any component
failure results in system failure then the probability of failure for the system in general
is the volume integral:

p f =
∫

g(X)≤0

. . .

∫
f (x1, . . . , xn)dx1 . . . dxn (7.1)

Calculation of this multifold integral can often be difficult and in most cases
approximations or bounds are used to estimate the range of the probability of system
failure.
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Fig. 7.1 Multiple limit
states, gj(X), defining system
failure, gj(X) = 0
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g2(X)=0
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7.1 Idealized Systems

We often idealize a system into series or parallel to aid in conceptualizing how
components are connected and interrelated.

7.1.1 Series

A series system is one where the entire system fails if any component in the systems
fails (i.e., “weak-link-in-the-chain”). This is a nonredundant system and is the type
of system that engineers should avoid; unfortunately in Civil Engineering we build
many systems that are in series, particularly lifelines such as highways, bridges,
pipelines, communication/transmission lines, canals, levees, etc. And even when
systems are redundant at one scale, they can often be nonredundant at a different
scale (e.g., the electricity grid has redundancy at the local level but when scaled to
the regional level is often dependent on a single component or node when connecting
to a neighboring regional grid).

The probability of failure of a series system is the joint union of all the failure
states of the components.

p f,series = P

⎡
⎣ k⋃

j=1

(
g j (X) ≤ 0

)
⎤
⎦ (7.2)
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7.1.2 Parallel

Parallel systems are redundant systems that only fail when all components in the
system fail. These are desirable qualities for an engineered system. Redundancy is
often critical when we are addressing collapse or other catastrophic failure modes.
The probability of failure of a parallel system is the joint intersection of all the failure
states.

p f,parallel = P

⎡
⎣ k⋂

j=1

(
g j (X) ≤ 0

)
⎤
⎦ (7.3)

7.1.3 General

Some systems can be a combination of series and parallel components in different
arrangements (e.g., a water distribution system is better characterized as a general
system). To generalize the discussion we can talk about cut sets and link sets; a cut
set results in system failure and a link set results in system survival.

• In a series system each component is a cut set and all components together are a
link set.

• For a parallel system, all components together form the only cut set and every
component is a link set.

The probability of failure for a general system can be described as follows where
the cut sets are defined as [C1…CM].

p f,general = P

⎡
⎣ M⋃

m=1

⋂
j∈CM

(
g j (X) ≤ 0

)
⎤
⎦ (7.4)

Here we are taking the intersection of the events within the cut sets because these
are parallel, and the union of the events between cut sets because these are series.

Example: Two-Component System
The following example evaluates a simple two-component system arranged in
series and parallel. The two components have the same component probability
of failure. The component failures are correlated due to similar construction
and materials and/or similar loading:

P(A) = P(B) = 0.1 P(A|B) = 0.5
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If we arrange the components into a series system, then the probability of
failure would be the union of the failure events; the failure of component A or
the failure of component B:

P(A ∪ B) = P(A) + P(B) − P(AB) addition rule

= P(A) + P(B) − P(A|B)P(B) multiplication rule

= 0.1 + 0.1 − (0.5)0.1 = 0.15

Notice that the conditional probability between the two components reduces
the probability of failure of a series system. If the component failures were
perfectly correlated the system probability of failure would be 0.1, and if they
were statistically independent the system probability of failure would be 0.19
(calculate these yourself to verify).

If we arrange the two components in a parallel system then the system
probability of failure would be the intersection of the failure events; the failure
of component A and the failure of component B:

P(AB) = P(A|B)P(B) multiplication rule

= (0.5)0.1 = 0.05

If the components were perfectly correlated the system probability of failure
would be 0.1, and if they were statistically independent the system probabil-
ity of failure would be 0.01 (calculate these yourself to verify). Notice that
conditional probability increases the probability of failure of parallel systems.
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7.2 System Bounds

Bounds on the system probability of failure provide a simplified way of estimating
the range that the probability of failure can take. Hownarrow the estimate of the range
is a function of the complexity of the bounds estimate and how much information
is included in estimating the bounds. The first order or unimodal bounds neglect
the specific correlation between events and therefore can be rather wide. Higher
order bounds account for specific correlation between events and provide narrower
estimates as a function of the degree of correlation included.

7.2.1 Unimodal Bounds for Series Systems

Unimodal bounds for positively correlated (ρi j > 0) individual failure events
(Ei = [gi (x) < 0]) in a series system can be written as:

(
max

i
P(Ei )

)
≤ p f,series ≤

(
1 −

k∏
i=1

(1 − P(Ei ))

)

�
k∑

i=1

P(Ei ) for small component p f (7.5)

The left side of the inequality states that the lower unimodal bound on the prob-
ability of failure for a series system with positively correlated failure events is the
max of any single failure event. Whereas the right side of the inequality states that
the upper bound is approximately the sum of the probability of failure of all failure
events, as the positive correlation between events will result in something less than
this.

The complementary probability of safety (ps = 1 − p f ) is then:

k∏
i=1

P
(
Ei

) ≤ ps,series ≤ min
i

P
(
Ei

)
(7.6)

The left side of this inequality is the product of the complement of the probability
of failure of all failure events, and the right side is the minimum of the complement
of the probability of failure for any single failure event.

Unimodal bounds for negatively correlated failure events
(
ρi j < 0

)
in a series

system are:

(
1 −

k∏
i=1

P
(
Ei

)) ≤ p f,series ≤ 1 (7.7)
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The left side of the inequality is the complement of the product of all nonfailures,
and the right side is one (which is rather uninformative). The probability of safety is
then:

0 ≤ ps,series ≤
(

k∏
i=1

P
(
Ei

))
(7.8)

The left side of the inequality is zero (again rather uninformative), and the right
side is the product of the complement of the probability of failure for all failure
events.

Example: Reservoir Problem
A reservoir is designed for both flood control and water supply. Flood control
(F) is affected by snow melt (A) and rainfall (B). And a low reservoir (G) can
be caused by a dry winter (C) and low rainfall (D). Say we know that snowmelt
and rainfall are positively correlated (i.e., wet winters lead to wet springs) but
do not have a value of the correlation coefficient (ρAB). And we know that dry
winters and low rainfall are positively correlated (i.e., dry winters lead to dry
springs) but again we do not have a value of the correlation coefficient (ρCD).
Intuitively we know that flooding and drought are negatively correlated (ρFG).
If we are given the following component probabilities what is the probability
of poor reservoir performance?

P(A) = 0.15 P(B) = 0.20 P(C) = 0.10 P(D) = 0.20

p f = P(F ∪ G) = P((A ∩ B) ∪ (C ∩ D))

The statement above reads; the probability of failure or probability of poor
performance of the reservoir can be due to flood control problems or a low
reservoir. Flood control problems can be caused by snowmelt and rainfall, and
a low reservoir can be caused by low rainfall and a dry winter. We can estimate
the bounds of this system using a first-order or unimodal approximation.

p f,series ≥ 1 − P
(
F

)
P

(
G

)

because F and G are negatively correlated.
To determine P

(
F

)
we use unimodal bounds for positively correlated

events.

[
P

(
A
)
P

(
B

)] ≤ P
(
F

) ≤ [
min

(
P

(
A
)
, P

(
B

))]
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0.85 × 0.80 ≤ P
(
F

) ≤ 0.80

0.68 ≤ P
(
F

) ≤ 0.80

Similarly solving for P
(
G

)
.

[
P

(
C

)
P

(
D

)] ≤ P
(
G

) ≤ [
min

(
P

(
C

)
, P

(
D

))]
0.90 × 0.80 ≤ P

(
G

) ≤ 0.80

0.72 ≤ P
(
G

) ≤ 0.80

Therefore

p f,series ≥ 1 − 0.80 × 0.80 = 0.36

The probability of unsatisfactory reservoir performance is greater than or
equal to 36% which is information that can aid in the decision or planning
process for the reservoir as part of a larger a water system.

7.2.2 Bimodal Bounds for Series Systems

To improve the bounds (i.e., find a narrower approximation of the bounds) on a series
system we can use bimodal or higher estimates. Bimodal bounds partially account
for the correlation between failure events by using event pairs or joint events (Ei

Ej). Ordering of the events can affect the results with higher modal estimates, and
those interested are encouraged to read Song and Der Kiureghian (2003) for further
details.

A method of bimodal bounds for series systems was derived by Kounias (1968)
andHunter (1976) and simplified byDitlevsen (1979) by assumingGaussian variates:

P(E1) +
k∑

i=2

max

⎛
⎝P(Ei ) −

i−1∑
j=1

P
(
Ei E j

); 0
⎞
⎠ ≤ p f,series

≤ P(E1) +
k∑

i=2

(
P(Ei ) − max

j<i
P

(
Ei E j

))
(7.9)
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Example: Unimodal versus Bimodal
A simply supported beam subjected to a uniformly distributed load can fail in
flexure ( f1), shear ( f2), or both flexure and shear ( f3). Therefore failure of this
systemhappens if any component fails p f,series = P( f1 ∪ f2 ∪ f3). Component
reliability has been performed for each failure mode and the results are:

β i ps, i pf, i

f 1 1.59 0.9445 0.0555

f 2 1.57 0.9418 0.0582

f 3 1.57 0.9418 0.0582

The failure modes are assumed to be positively correlated. The unimodal
bounds of this system are:

max(0.0555, 0.0582) ≤ p f,series ≤ 1 − (0.9445 × 0.9418 × 0.9418)

� (0.0555 + 0.0582 + 0.0582)

0.0582 ≤ p f,series ≤ 0.1622

� 0.1719

If some numerical simulations (e.g., finite element) were run to determine
how the failure modes are correlated we may have the following results:

P( f1| f2) = 0.45; P( f1| f3) = 0.99; P( f2| f3) = 0.57

The joint probabilities are then:

P(AB) = P(A|B)P(B) multiplication rule

P( f1 f2) = 0.0250; P( f1 f3) = 0.0576; P( f1 f2) = 0.0332

The bimodal lower bound is then:

P( f1) + (max[(P( f2) − P( f1 f2)); 0]
+max[(P( f3) − P( f1 f3) − P( f2 f3)); 0])
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= 0.0555 + (max[(0.0582 − 0.0250); 0]
+max[(0.0582 − 0.0576 − 0.0332); 0])

= 0.0887

And the upper bound is:

P( f1) + [P( f1) − P( f2 f1)] + [P( f3) − P( f3 f1)]

= 0.0555 + [0.0582 − 0.025] + [0.0582 − 0.0576]

= 0.0893

Therefore

00887 ≤ p f,series ≤ 0.0893

The table below shows the comparison between unimodal and bimodal
bounds.

Lower bound Upper bound

Unimodal 0.0582 0.1622

Bimodal 0.0887 0.0893

In this example the bimodal bounds provided a much narrower range by
including the correlation of joint events. The bimodal bounds here may con-
strain the system probability of failure sufficiently that it can be useful for
engineering decision purposes.

7.2.3 Unimodal Bounds for Parallel Systems

Estimating the probability of failure for a parallel system is often not as critical as a
series system because parallel systems have redundancy. Nonetheless the first order
bounds for a parallel system treat the components as the wholly uncorrelated or
perfectly correlated:

k∏
i=1

P(Ei ) ≤ p f,parallel ≤ min
i

P(Ei ) (7.10)
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Table 7.1 Table showing the
general effect that correlation
has on series and parallel
systems

Inc +ρ Dec +ρ

Series system ↓ Dec pf ↑ Inc pf

Parallel system ↑ Inc pf ↓ Dec pf

Table 7.2 Table showing the
general effect that the number
of components has on series
and parallel systems

Inc # components Dec # components

Series system ↑ Inc pf ↓ Dec pf

Parallel system ↓ Dec pf ↑ Inc pf

These bounds are often very wide and not highly informative. For parallel systems
with a small number of components an estimate can be accomplished by using higher
order bounds or multifold integration (Ang and Tang 1984).

For structures or other built features redundancy of the components is most often
active as the components are each carrying load even though they are in a paral-
lel arrangement. An example of active redundancy is structural columns that are
designed to carry the full load in the event of failure of a nearby column. This com-
pares to redundancy that is passive where parallel components are standby or backup
in case of emergency. An example of passive redundancy is backup generators at a
hospital that come online when there is a power outage. Parallel systems with active
redundancy are markedly different than those with passive redundancy and should
be treated accordingly.

7.3 Correlation and Components

Correlation or conditional probability between components can have a dramatic
impact on the probability of failure, the difficulty in evaluating this impact often
arises in the measuring and accounting for this dependence. Also the number of
components in a system can have a large impact on the system probability of failure.
Tables 7.1 and 7.2 show the general trends that correlation and number of components
have on the probability of failure for a series or parallel system (Hollenback 2013).
To more formally calculate this impact some type of simulation is often required.
Alternatively, higher order bounds can provide an estimate.

If a series system has positive correlation between components then it is more
reliable than a system of statistically independent components. Positive correlation
is beneficial to series systems because if one component is in survival then all of
the components are likely to be in survival, which leads to system survival. Since
the same holds true for one component being in failure state, it might seem that
the beneficial effect of positive correlation would be canceled out. However, if one
component is in failure then the system fails regardless of other component states.

If a parallel system has positive correlation between components it will be less
reliable than a system of statistically independent components. Positive correlation is
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detrimental to parallel systems because if one component is in failure then all of the
components are likely to fail, which leads to system failure. Since the same holds true
for one component being in survival state, it might seem that the detrimental effect
of positive correlation would get canceled out. However, if only one component is
in survival state then the system survives regardless of the other component states.

When considering the impact of the number of components of an idealized system
we must consider system redundancy. Series systems are nonredundant; therefore,
any increase in the number of components increases the likelihood of system failure.
Parallel systems however are redundant and increasing the number of components
increases the redundancy thereby decreasing the probability of failure.

Defining components of a system can be straight forward for some systems, and
ambiguous for other systems. For a bridge system composed of deck sections the
components are obvious. The same for a structure with columns supporting a floor
slab. For systems such as highways or levees, determining what constitutes a compo-
nent can be difficult and somewhat arbitrary. For spatially distributed systems such
as lifelines we can define a component based on its spatially correlated load and
resistance (Hollenback and Moss 2011; Moss and Germeraad 2013).

Note that correlation and conditional probability have been used interchangeable
when discussing dependence. Conditional probability is a complete measure of sta-
tistical dependence, whereas the correlation coefficient is a partial or incomplete
measure. As discussed previously in Chap. 3 in the section on conditional probabil-
ity, the correlation coefficient is a linear estimate of statistical dependence. However
for jointly normal or jointly lognormal random variables the correlation coefficient
fully defines the conditional distribution and therefore is a complete measure of
dependence in these special cases (personal communication, Armen Der Kiuregian,
February 2018).

Example: Parallel and Series Power Generators
A nuclear power plant has five redundant backup power generators. These are
designed to withstand strong ground shaking. Any one of the generators can
provide sufficient energy to safely shut down the power plant, so if they are
wired independently and are distributed around the site then this system might
be considered a parallel system.
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The component load and resistance, in typical ground shaking units of grav-
ity, are assumed normally distributed with the following moments:

Q = N (0.10g, 0.03g) Ri = N (0.20g, 0.05g)

The load is the forecast of strong ground shaking associated with some
future event (usually estimated in a probabilistic manner). The resistance is
the estimated capacity a generator has to resist the strong ground shaking. The
limit state of each component is then:

gi (X) = Ri − Q

If we assume that load and resistance are statistically independent the com-
ponent probability of failure is:

p fi = �

(
− 0.20g − 0.10g√

0.05g2 + 0.032

)
= 1 − �(1.71) ∼= 0.044

The system probability of failure for this parallel system is the intersection
of all failure events (Ei ) because for the system to fail all components must
fail:

p f = P(E1 ∩ E2 ∩ . . . ∩ E5)

The bounds on this parallel system are (Eq. 7.10):

k∏
i=1

P(Ei ) ≤ p f,parallel ≤ min
i

P(Ei )

1.65 × 10−7 ≤ p f ≤ 0.044

The left side of the inequality is for statistically independent component
failure events, and the right side is for perfectly correlated component failure
events. These bounds are rather large, so Ang and Tang (1984) considered
the same problem and included correlation of the ground motion. This is rea-
sonable since strong ground motions can be spatially correlated over typical
distances of a power plant footprint. Ang and Tang solved for the correlation
coefficient between component limit states (ρi j = 0.265) and then used a mul-
tifold integration approach to evaluate the system probability of failure. The
exact solution is a fivefold integral of the joint standard normal PDF:
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p f =
−β∫

−∞

−β∫

−∞
. . .

−β∫

−∞
fg′

1,g
′
2,...g

′
5
dg′

1 . . . dg′
5

where to get into standard normal space the limits states are written as:

g′
i = gi − μgi

σgi

To calculate this multifold integral a numerical solution is often the most
tractable approach. Ang and Tang used numerical quadrature and found the
system probability of failure to be p f = 1 × 10−4. If correlation between the
resistance of the individual components (due to manufacturing similarities or
other) is subsequently included, then the system probability of failure would
show an additional increase.

Now if we evaluate the same five backup power generators for tsunami
loading there are other considerations. The component load and resistance, in
units of wave height, are again assumed normally distributed:

Q = N (0.5m, 0.5m) Ri = N (1.0m, 0.2m)

If we assume that load and resistance are statistically independent the com-
ponent probability of failure is:

p fi = �

(
− 1.0m − 0.5m√

0.2m2 + 0.5m2

)
= 1 − �(0.928) ∼= 0.1762

For the loading we might assume that the wave height is nearly perfectly
correlated across the site (ρQi Q j ≈ 1.0) because of the scale and duration of
the wave with respect to the scale of the power plant. Instead of resorting to
a complex multifold integral we could use a proxy solution by assuming that
the system is now acting in series, if one generator fails due to a tsunami wave
then all will fail because of the load correlation. Utilizing bounds of a series
system (Eq. 7.5):

(
max

i
P(Ei )

)
≤ p f,series ≤

(
1 −

k∏
i=1

(1 − P(Ei ))

)

0.1762 ≤ p f ≤ 0.6206

The right side of the inequality is the perfectly correlated bound which is
a reasonable estimate of how the system will behave given the loading of a
tsunami wave.
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7.4 Chapter Summary

• A system is a group of components that make up some engineered feature.
• The probability of failure of a system can be difficult to determine, often requiring
multifold integration or simulations.

• Systems can be idealized as series systems, where the system fails when any
single component fails, or parallel systems, where the system fails only if every
component fails.

• Bounds can provide an estimate on the upper and lower range of system probability
of failure. Presented are unimodal series and parallel system bounds and bimodal
series system bounds.

• Correlation of components can have a strong influence on the system probability
of failure. Increasing positive correlation between components has a beneficial
impact on series systems by increasing the likelihood of overall system survival,
and detrimental impact on parallel systems by increasing the likelihood of overall
system failure.

• An increasing number of components in a system increase the probability of
failure for a series system because there are more components to fail, yet decrease
the probability of failure for a parallel system because of redundancy.

• Redundancy in parallel systems can be active or passive. Passive redundancy
is usually in the form of a backup system that comes into play when failure
occurs. Active redundancy is often in the form of load-bearing components that
are designed to carry additional load in the event of nearby component failure.
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Chapter 8
Introduction to Decision Analysis

Component (Chap. 6) and System (Chap. 7) reliability have been presented for com-
puting the probability of failure, but engineering problems are often more compli-
cated than calculating the component or system reliability. In this chapter some tools
for intuitively mapping out a complex engineering problem and moving toward a
decision are demonstrated. These tools can be described as trees because visually
they are often presented like branches of a tree. These tools are grouped here into
four types: event trees, decision trees, logic trees, and fault trees. Schematics of these
trees are shown in Figs. 8.1 and 8.2.

An event tree maps the potential outcomes of some situation with the probability
of those outcomes explicitly described on each branch. The probabilities must sum
to 1.0 vertically down across all branches, thereby capturing the total probability
at each step. Decision trees are event trees with the costs or consequences for each
branch included. The probability of a particular outcome is multiplied by the cost of
that outcome, thereby quantifying the risk of that particular outcome. Decision trees
provide risk, a calibrated metric, for engineering decisions as was first discussed in
Chap. 1. The probability of each branch can be determined using the various tools
described throughout this text, statistics, probability, and reliability. Often one branch
of an event or decision tree requires a component (or system) reliability analysis to
define the probability of that particular outcome.

A logic tree is often used in situations where a particular problem has multiple
solution methods. Rather than arbitrarily selecting one solution method, all methods
are used and weighted according to the accuracy of or confidence in a particular
method. The probabilities here are often determined using expert consensus. Lacking
any prior information equal probabilities should be used. Sensitivity studies can then
determine the impact of a particular method on the results. A logic tree provides a
robustmean ormedian estimate by using all available information to defeat epistemic
uncertainty and solve the problem. However, the variance from a logic tree is ill
defined and there is little agreement as to how best to measure the variance within
this type of weighting scheme.

A fault tree does not contain probabilities for each branch because it is a visual tool
used for building often nontrivial probability statements by combining the unions

© Springer Nature Switzerland AG 2020
R. E. S. Moss, Applied Civil Engineering Risk Analysis,
https://doi.org/10.1007/978-3-030-22680-0_8

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22680-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-22680-0_8


www.manaraa.com

124 8 Introduction to Decision Analysis

Fig. 8.1 Schematics of
event and decision trees outcome a
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and intersections of subevents that cause failure. This tree is useful for complex
interdependent systems where a total probability statement is not intuitive from the
outset.

The best way to fully demonstrate these tools is through example, so the bulk
of this chapter will present specific problems where trees are an asset in problem
solving and moving the decision process forward.
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8.1 Correlation in Decision Analysis

Correlation as a concept is rather straightforward, but dealing with correlation in a
specific and quantifiable manner can be at times quite difficult. The term correlation
can describe many different interrelationships and phenomena. The probability of
each branch of a tree can be correlated via causal dependence, probabilistic correla-
tion, spatial/temporal autocorrelation, and/or statistical correlation. This list may not
be complete but tries to encompass the bulk of correlation. Below is described each
of these types of correlation with examples from a levee system to provide concrete
context.

Causal dependence is where one event causes another, and this is sequential failure
which is by nature a conditional probability (e.g., foundation settlement of a levee
increases the probability of a flood wave overtopping the levee).
Probabilistic correlation is where two uncertainties may depend on a third uncer-
tainty (e.g., the density of soil is an independent variable that can impact two other
variables important to levee performance, soil piping, and excess pore pressure gen-
eration).
Spatial or temporal autocorrelation is where two uncertainties are a function of
space or time (e.g., various soil properties of the levee foundation material are spa-
tially correlated due to the depositional nature of the soil. Seismic loading of a levee
system is temporally correlated due to the finite nature of earthquake fault rupture).
Statistical correlation is where two uncertainties are estimated from a data set that
is influenced by a common variance (e.g., the cohesion and friction angle of levee
embankment and levee foundation soil are estimated through a linear regression of
theMohr–Coulomb failure envelope to laboratory data and are negatively correlated).

8.2 Decision Analysis Examples

The following are examples demonstrating the utility of different decision tools.

Example: Power Failure Decision Tree
A power company has the option to install a backup power system at a cost
of $2k per year. If power goes out the company will take a $10k hit due to
penalties and fines. Based on an internal reliability analysis of the system the
annual probability of failure is 10%.
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Calculating the risk of events E1 and E2:

R(E1) = 0.1
(
$2k

) + 0.9
(
$2k

) = $2k

R(E2) = 0.1
(
$10k

) + 0.9
(
$0k

) = $1k

Based on this risk assessment the least expensive option would be to not install
the backup system. Of course this assumes that the costs and the probabilities
have been accurately assessed. [As a side note, previous case histories have
demonstrated time and again that people are notoriously bad at estimating the
consequences of a failure or catastrophe before hand (Moss and Germeraad
2013); therefore in this problem the $10k hit the companymay experience if no
backup is installedmay be an optimistically low estimate of the consequences.]

Example: Shell Mound Decision Tree
Offshore drilling operations will leave rock cuttings from the drilling process
on the ocean floor. These cuttings are composed partially of petroleum bearing
rock. The pile of cuttings left after the drilling is complete is called shell
mounds because sea organisms with shells (among other animals) take up
residence on the cuttings. Off the coast of central California an oil company
had decommissioned the drilling platforms and wanted to be recused of further
liability associated with the shell mounds they created. The question that the
local citizens asked was “Should the shell mounds be removed, or should they
stay in place in perpetuity? And if they stay in place, what is the risk given that
the area is prone to earthquakes?”
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This is a relatively complex problem that can be broken down into a decision
tree for finding the optimal solution. Here the consequences were quantified
in terms of surface area of the shell mound exposed, which is the percent
area of a shell mound where the petroleum-bearing rock is re-exposed due
to seismic-related deformations. This information was then combined into a
larger decision tree that incorporated costs associated with sea life, fishing
operations, beach tourism, and long-term resident health.

Adecision tree provided the framework andguidance for getting afirst-order
estimate of the risk due to earthquakes. The conditional probability of exposed
surface area of the shell mound for a particular failure mode was calculated
given the annual probability of exceedance of a large damaging earthquake.
Based on offshore sampling and laboratory data, engineering calculations were
combined with expert consensus to provide a relative assessment.

The large damaging earthquake (M6.5) is the maximum expected event for
that area, and the annual probability of exceedance was calculated using a logic
tree common in PSHA (probabilistic seismic hazard analysis; McGuire 2004).
The risk associated with each failure mode is:

R(A) = 0.005(0.40)0.10 = 0.00020

R(B) = 0.005(0.50)0.20 = 0.00050

R(C) = 0.005(0.10)0.50 = 0.00025

And the total annual risk due to an earthquake is the sum of the risk from
each failure mode:

R(EQ) = 0.0002 + 0.0005 + 0.00025 = 0.00095

Compare this to 100% exposure in the year of removal if the shell mound
were to be removed.
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Armed with this rough analysis and subsequent details provided by a team
of economists, the citizens made a decision to leave the shell mound in place
and absolve the oil company of any future liability. The risk was effectively
communicated to the stake holders, and a rational decision was made that
considered all the available information.

Example: Levee Failure Event Tree
The following event tree describes flooding potential associated with levee
performance. Here we map the potential of poor planning that results in levee
overtopping and poor design that results in levee failure.

The event tree shows the relationship between the possible failure modes
for this levee system. A branch of the tree that ends in an X denotes no failure.
A branch of a tree that ends in failure has a ˛ and the associated probability.

In this example, the probability of a big storm, usually reported as an annual
probability, is 0.1%, which is probably based on historical weather and stream
flow data for the region. The overtopping here has the highest probability of
occurrence when compared to piping and stability failure. This means that
the peak water level (i.e., loading) for which the levee was designed was not
adequately characterized, as opposed to piping and stability failures where the
engineering of the levee (resistance) is faulty.
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Example: Seismic Hazard Logic Tree
Logic trees are used frequently for the problem of assessing seismic hazard.
The annual probability of exceeding some ground shaking level is calculated
as a multifold integral of conditional probabilities of earthquake rupture, mag-
nitude, and distance. There are many competing models for calculating the
seismic hazard that each contains some epistemic uncertainty. To defeat the
epistemic uncertainty these competing models are used and weighted accord-
ing to accuracy, confidence, or some other scheme. The following logic tree
shows one path of a seismic hazard calculation that would be performed using
Monte Carlo simulations to generate many realizations. The fault branch can
includemany faults in a region that could rupture and the probability associated
with the fault represents the confidence in how viable the fault is in producing a
rupture (this can include alternate fault geometry, fault segmentation, or other
fault characteristics). The recurrence model branch includes two common rela-
tionships weighted according to how well they describe that particular fault.
The slip rate and maximum magnitude branches are represented by a single
model each with some defined uncertainty. And the ground motion prediction
equation branch includes four equally viable models that are all included to
defeat epistemic uncertainty in the individual models and produce a robust
mean or median result.
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Example: Bridge Failure Fault Tree
In this example we are trying to quantify the probability of failure of an event
that comprised of many subevents. The fault tree allows us to intuitively dia-
gram the different subevents to then produce a statement of the total probability
of the event. The different subevents, here different failure modes of a bridge,
are shown connected by symbols that represent or (indicating union) or and
(indicating intersection). As shown in the following fault tree, bridge collapse
can be caused by a failed support or a failed pile or an overstressed girder.
These events are then broken down into further subevents. We can then replace
the description of the event and subevents with event numbers to aid us in writ-
ing the total probability statement. The order of the numbering is unimportant;
it is just a shorthand way of keeping track of the subevents.
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Using the numbered event tree we can write a probability statement describ-
ing the system as shown below. At the first level we have:

P(E) = P(E1 ∪ E2 ∪ E3)

We take that to the second level of subevents:

P(E) = P((E4 ∪ E5) ∪ (E8 ∪ E9) ∪ (E6 ∪ E7))

And the final level of subevents for this event tree is:

P(E) = P((E4 ∪ E5) ∪ ((E10E11) ∪ (E12E13)) ∪ (E6 ∪ E7))

The event tree allowed us to systematically piece together the complex prob-
ability statement of bridge collapse including several different failure modes.
Component reliability analysis would inform us as to the probability of failure
for each subevent which can then be plugged into this complex probability
statement to arrive at the total probability of failure of the bridge, P(E).



www.manaraa.com

132 8 Introduction to Decision Analysis

8.3 Chapter Summary

• Complex or multicomponent systems can often be intuitively mapped using dif-
ferent trees.

• Trees can allow for a broader perspective on a risk or probability of failure problem,
thereby providing a framework for the component or system reliability analysis.

• Event trees and decision trees map the sequence of events that lead up to failure.
Event trees quantify the probability of failure for a system, and decision trees
include consequences to provide risk for a system.

• Logic trees are useful when multiple models can be used to solve a problem. The
tree provides a weighting framework for including all models, thereby minimizing
epistemic uncertainty in each individual model.

• Fault trees can allow for a much clearer understanding of multiple failure modes
in a system and can provide a means of determining a total probability statement
for the system.
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Chapter 9
Reliability-Based Codes (LRFD)

There aremany design codes used in engineering design today. Originallymost codes
used some form of an allowable or working stress design (ASD/WSD) approach.

R

FS
≥

∑
Qi (9.1)

R is the resistance, FS is the factor of safety, and Qi are the loads (e.g., dead, live,
extreme…). The factor of safety represents the lumped uncertainty from load and
resistance and the desire for overdesign and safety in one factor. This approach has
been used to check and ultimate limit state (i.e., failure, collapse) and/or a service
limit state (i.e., deformation, deflection).

Within the last few decades design codes have been switching to a load and
resistance factor design (LRFD) approach. The basis of LRFD is reliability, but the
reason for the switch is because using a reliability-based approach provides a more
accurate answer which often results in cost savings for the project.

ϕR ≥
∑

αi Qi (9.2)

R and Qi are the same resistance and loads as described above, but instead of one
lumped factor of safety we have ϕ the resistance factor and αi the load factors. The
resistance is factored down and the loads factored up to achieve a desired design
level. The design level in LRFD is based on the reliability index, thereby pinning
the reliability on the number of standard deviations away from failure the design
should be. This provides a more rational relationship between load and resistance by
accounting for the respective uncertainties in each.
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9.1 Reliability Formulation

There are two methods for determining the load and resistance factors for LRFD
design:

(1) Optimizing the LRFD equation using empirical data and reliability methods
(FOSM and/or FORM). A target reliability index is used, often in the range of
2.0–3.0.

(2) Calibrating the LRFD equation to previous ASD/WSD design practice using
codified FS.

The first method is preferred, but there is often insufficient data to carry this out.
The second method is comforting because it relies on past practice but may not
achieve the goal of a more accurate answer and cost savings that the first method
can. Examples of each are shown below.

9.1.1 Calibrated LRFD (Method 2)

We will start with method 2 where we are calibrating load and resistance factors
from past codified factors of safety. If we combine Eqs. (9.1) and (9.2) and solve for
the resistance factor:

ϕ ≥
∑

αi Qi

FS
∑

Qi
(9.3)

If only dead and live load are considered:

ϕ = αDQD + αL QL

FS(QD + QL)
(9.4)

By dividing through by QL we get an equation in terms of the load ratio:

ϕ = αD
QD

QL
+ αL

FS
(

QD

QL
+ 1

) (9.5)

If we fix the load factors (that means fixing the uncertainty from dead and live
loads) then we can back-calculate the resistance factor for a given factor of safety.
Typical load factors fromAASHTO (American Association of State Highway Trans-
portation Officials who have implemented LRFD in highway bridge design) are
αD = 1.25 and αL = 1.75. Fixing the load factors means that the remaining uncer-
tainty in the factor of safety is attributed to the resistance; we are in essence parti-
tioning the lumped uncertainty in the factor of safety into load and resistance sides
of the equation (Table 9.1).
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Table 9.1 Factor of safety
calibrated resistance factors
(ϕ) for different dead (QD)
versus live load (QL) ratios

Calibrated ϕ factors from past FS

FS QD/QL = 1 QD/QL = 2 QD/QL = 3

1.5 1.00 0.94 0.92

2.0 0.75 0.71 0.69

2.5 0.60 0.57 0.55

3.0 0.50 0.47 0.46

The loads are to be factored up by 125 and 175%, respectively. If our ratio of dead
to live load is 1 and the ASD/WSD design traditionally used a FS = 3.0 then we will
factor our resistance down by 50% to proceed with the design using LRFD (Eq. 9.2).

9.1.2 Optimized LRFD (Method 1)

If there is sufficient data to perform statistics then the load and resistance factors can
be evaluated directly from the data, and not back-calculated from prior factors of
safety. This is the preferred method but requires sufficient data and careful study of
the particular engineering problem.

For this method we will use a shallow foundation design problem (borrowed from
Baecher and Christian (2003)) and FOSM to illustrate the application. The LRFD
Eq. (9.2) (rewritten here):

ϕR ≥
∑

αi Qi

We treat R and Q as random variables and in this problem will assume we are
dealing with a single load to simplify the example:

ϕμR ≥ αμQ (9.7)

And if both R and Q are Gaussian (to allow for an exact solution) we know from
Chap. 6 on component reliability that the margin of safety and reliability index are:

M = R − Q

β = μM

σM
= μR − μQ√

σ 2
R + σ 2

Q − 2ρRQσRσQ

Solving for μR and substituting into the single load LRFD Eq. (9.7), we arrive at
an expression for the resistance factor:
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ϕ = αμQ

μR
= αμQ

β

√
σ 2
R + σ 2

Q − 2ρRQσRσQ + μQ

(9.8)

The reliability index is set at a target value, usually 2 or 3 depending on the number
of standard deviations away from failure that is deemed acceptable for the particular
engineering design. A target reliability index, like a factor of safety, is determined via
consensus usually through building code panels or other expert consensus forums.

That leaves determining the moments of the load and resistance in addition to the
load factor in order to solve for the resistance factor. Note that Eq. (9.8) applies to
any similar engineering design situation where we are dealing with a single load and
we have normally distributed load and resistance.

In this example we are analyzing the bearing capacity of a shallow foundation
footing. For this problem R is the soil resistance or in geotechnical terms the ultimate
bearing capacity (qult) as calculated using Terzaghi’s method, Q is the single dead
load due to the foundation often called the bearing pressure (q), and the load factor
found in AASHTO foundation design recommendations, as discussed previously.

Terzaghi’s method for calculating the soil resistance uses the following equation:

R = qult = cNc + σ ′
ZDNq + 1

2
γ BNγ

We will assume it is a strip footing (B = 1m) with its base located at the soil sur-
face (σ ′

ZD = 0) resting on a sandy soil (c = 0) with a unit weight (γ ) of 18.5 kN/m3

and a friction angle (φ) of 35°. For readers unfamiliar with bearing capacity analysis
the details of the equation are unimportant for this discussion, only the fact that the
equation is a function of a random variable representing resistance is important. The
bearing capacity equation reduces when we input the assumptions to:

R = qult = 1

2
γ BNγ

The above equation is a function of the unit weight (γ ), the footing dimension
(B), and an empirical factor (Nγ ). Nγ is itself a function of the friction angle (φ), the
solution geometry, and the physical assumptions behind Terzaghi’s method. If we
treat Nγ as a randomvariablewe can propagate the uncertainty it contains through the
bearing capacity equation. Nγ is usually determined using linear regression which
is a “best fit” to data that has a certain amount of scatter as shown in Fig. 9.1.

Using results from Terzaghi’s (1943) original analysis for φ = 35° the statistics
of the empirical factor are μNγ

= 82 and σNγ
= 17. Using FOSM to estimate how

this uncertainty propagates to qult:

μqult ≈ 1
2γ BμNγ

= 760 kPa

σqult ≈
√

σ 2
Nγ

(
1
2γ B

)2 = 157 kPa

δqult ≈ 21%
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Fig. 9.1 Schematic showing
linear regression results of
friction angle versus the
empirical bearing capacity
factor. The scatter or
uncertainty in the
relationship is evident, and a
hypothetical distribution is
overlaid

We now have the resistance side of the problem defined by its first and second
moments. For the load side of the problem the bearing pressure is usually calculated
as a function of the column load (P), area (A), self weight (W ) of the footing, and
any uplift pore pressure (u) caused by a water table above the footing base:

q = P + W

A
− u

For this example we will assume that the bearing pressure is roughly 250 kPa per
linear meter of the strip footing. To quantify the uncertainty of this load we look up a
coefficient of variation reported in the structural codes, which gives δq ≈ 15%. The
codes also provide the load factor, and as mentioned we are just analyzing for a dead
load αD = 1.25. Typical shallow foundation design would have a target reliability
index of β = 3.0.

Neglecting any correlation between load and resistance we can calculate the resis-
tance factor using Eq. (9.8):

ϕ = 1.25(250)

3.0
√
1572 + 37.52 + 250

= 312.5

734.3
= 0.43

This resistance factor is a function of the uncertainty, and here the uncertainty
is from the method used to determine the bearing capacity. Table 9.2 shows a com-
parison of this calculated value to typical values (Barker et al. 1991; Withiam et al.
2001).

A semi-empirical method uses field test results directly for the resistance calcu-
lation (e.g., SPT blow counts). A rational method uses engineering properties that
were converted fromfield or laboratory test results for the resistance calculation (e.g.,
friction angle from SPT blow counts).

For shallow foundation design, the soil type, method of analysis, and type of
test used to measure the soil properties all affect the amount of uncertainty in the
resultant, which is reflected in the value of the resistance factor. In LRFD design, the
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Table 9.2 Typical resistance factors for shallow foundation bearing capacity analysis

Soil type Method + test Resistance factor φ FS ASD FS LRFD

Sand Semi-empirical + SPT 0.45 3.0 3.2

Semi-empirical + CPT 0.55 2.5 2.6

Rational + SPT 0.35 2.5 4.1

Rational + CPT 0.45 2.5 3.2

Clay Semi-empirical + CPT 0.50 2.5 2.9

Rational + lab 0.60 2.5 2.4

Rational + field vane 0.60 2.5 2.4

Rational + CPT 0.50 2.5 2.9

higher the resistance factor, the higher the confidence in the answer because there is
less uncertainty in the variables and/or the resultant.

Shown in Table 9.2 are the factors of safety typically used for ASD design and
the true or LRFD-equivalent factors of safety that include the uncertainty in the
analysis. In most cases, shallow foundations are overdesigned using ASD because
the uncertainty is not properly quantified. This is the impetus for quantifying the
uncertainty and the basis of LRFD design: to better define the threshold of failure
and properly design against it. Overdesign is often costly, both in time and materials,
and by performing a more accurate analysis by including the uncertainty a better
more cost-effective design can often be achieved.

9.2 Chapter Summary

• LRFD is a design code framework that includes quantified uncertainty in the load
and the resistance.

• The basis for LRFD is reliability, the samemethods that were presented in Chap. 6.
• Load and resistance factors can be derived from statistics of the problem (Method
1) or back-calculated from a previous factor of safety (Method 2).

• Using LRFD provides a more accurate answer to the design problem, which trans-
lates to a safer design that also often results in cost savings.
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Chapter 10
Spatial Variability

All uncertainty addressed in this text so far has been in the form of point estimates, or
uncertainty that can be attributed to a specific location. Uncertainty is also a function
of differences in properties from location to location. This is commonly referred to as
spatial variability and is the focus of this chapter. Uncertainty can also be a function
of the progression of time (temporal uncertainty), but that will not be addressed here.

Spatial variability is considered and quantified in many fields of engineering but
was first done so for developing location-dependent probability distributions of ore
grades for mining operations (Isaaks and Srivastava 1989). In mining and related
areas the means of quantifying spatial variability are often called geostatistics and
applications can be found in the fields of geology, petroleum exploration, hydroge-
ology, oceanography, geography, agriculture, geographic information systems, epi-
demiology, logistics, and others where spatial variability is of import.

In our discussion of spatial variability we will focus on the correlation of perfor-
mance between individual components within a Civil Engineering system and how
that influences system reliability. We are primarily interested in how component
performance parameters are jointly distributed and how the correlation structure of
this joint distribution is dependent on the relative spacing of the components. Other
applications of geostatistics focus on interpolation and simulation of random variable
realizations with distance, which is often referred to as kriging.

To frame the discussion let’s take a linear engineered system such as a railroad
corridor that is founded on an embankment (Fig. 10.1). If we want to determine
the probability of failure of this entire corridor, we are interested in the probability
of failure of the components that make up this system. In reliability terms we are
interested in the joint distribution of load and the resistance as a function of dis-
tance along the railroad corridor. The rails and the embankment are man-made and
will have properties associated with their fabrication and construction. But construc-
tion along this corridor took time and maybe the conditions changed throughout the
building process resulting in the variability of the resistance with distance (e.g., tem-
perature/weather changes, labor supply changes, differential exposure of materials,
variable labor quality with time/distance).

© Springer Nature Switzerland AG 2020
R. E. S. Moss, Applied Civil Engineering Risk Analysis,
https://doi.org/10.1007/978-3-030-22680-0_10

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22680-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-22680-0_10


www.manaraa.com

142 10 Spatial Variability

EmbankmentProfile View
of 1 km long
Rail Corridor

Cross Section
of Rail Corridor

Foundation Soil

Fig. 10.1 Conceptual image of a rail corridor showing the profile and cross section. Failure mech-
anism of interest is bearing capacity failure

The foundation soil below the embankment has variability with distance as a
function of the depositional environment, past and present stress conditions, land
use, etc.

For this corridor if we divide it up into three segments and treat the segments as
components, then the system probability of failure for this series would follow the
addition rule:

M = R − Q for each component

P( fsystem) = P(∪Mi ) = P(M1 ∪ M2 ∪ M3)

= P(M1) + P(M2) + P(M3) − P(M1M2) − P(M1M3)

− P(M2M3) + P(M1M2M3)

Without the joint probabilitieswe could bound the systemunimodally as inChap. 7
to estimate the system probability of failure. But the joint probability terms are
informed by the spatial variability (in this case mainly the resistance), and if we
quantify the spatial variability, then we can better estimate the probability of system
failure as well as statistically define the length that constitutes a normative size of a
segment given the physics of the problem.

As we have done with stationary problems in this textbook, spatial problems
will start with statistics (interrogating the past) and then proceed toward probability
(forecasting the future).

10.1 Empirical Spatial Statistics

The properties of something can have spatial dependence in its; overall trend, extreme
value locations, degree of continuity, and correlation. The univariate (central ten-

https://doi.org/10.1007/978-3-030-22680-0_7
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dency and dispersion) and bivariate (correlation) statistics we developed in Chap. 1
do not apply to these spatial properties.

Overall trends may be important. Think of a surface topography of the land, algae
concentrations on a pond, and texture of a concrete slab. These can be mapped as
contour maps, symbol maps (categories or bins), or indicator maps (Boolean).

Extreme values or anomalies are often of interest, and regions of high variability
can be important when quantifying spatial variability. The term heteroskedasticity
means having regions of differing variability, and homoscedasticity means having
regions of the same variability. Moving window statistics is a means of binning the
data with distance. In Fig. 10.2 we see two different situations: the first (top plot)
showing the central tendency and the dispersion that are relatively constant with
distance, whereas the second (bottom plot) showing both the central tendency and
dispersion trending with distance.

For spatial continuity, values that are at a closer distance to each other are more
similar than values that are at further distance from each other. This is common with
soil properties or fluid concentrations or load interfaces or other similar situations.
In Fig. 10.3 we show plots of some value at location x with respect to another value
at location x + h, where h is a fixed separation (or lag) distance between points.
As we increase h from 1 to 10 we see an increase in scattering indicating a spatial
dependence of correlation. Using ellipses as in Chap. 1 we can visualize the ellipse
getting fatter as we go from h = 1 to h = 10 which means the correlation coefficient
is decreasing with increasing separation distance.

The plots above can be generated for as many separation distances as feasible with
a given dataset spread out over some distance. Paired data (x and x + h) “hopscotch”
along at increasing separation distances until there are a diminishing number of pairs
(Fig. 10.4). For an accurate characterization of spatial continuity there generally
needs to be a minimum of 100 values with distance (Webster and Oliver 1992). The

Fig. 10.2 Central tendency
and dispersion binned and
plotted as a function of
distance for homoscedastic
and heteroskedastic
situations
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Fig. 10.3 Plots of spatial continuity with separation distance (h). As the separation distance
increases, the spatial continuity and spatial correlation decrease

Fig. 10.4 Schematic of
value x with distance
measured at increasing
separation distances (h) x values distance

h=10

h=1

sampling interval is important to properly characterize what is called the range, or
the distance over which values are spatially correlated.

The aggregate results of spatial continuity plots can be used to evaluate the spatial
continuity in three common formats:

1. Correlation function,
2. Covariance function,
3. Moment of Inertia.

The correlation function (also called autocorrelation function) is found by cal-
culating the statistical correlation for each separation distance (h) and then plotting
these as a function of separation distance. The covariance (aka autocovariance) as
you may recall is the numerator of correlation (Eq. 2.6) and is calculated spatially
and plotted as a function of separation distance. The moment of inertia, which is
also called the semi-variance in geostatistics, is the “fatness” of the ellipse for each
separation distance. The semi-variogram quantifies when the spatial dependence of
data scatter reaches a maximum. Spatial correlation and spatial covariance functions
quantify when the spatial dependence reaches a minimum. Therefore, for a standard
normal assumption the covariance function and semi-variogram are complements of
each other [i.e., C(h) = Var(h) − γ (h) = 1 − γ (h)]. The correlation function is
simply a scaled version of the covariance function so that it has a maximum value
of 1.0 (Fig. 10.5).

The semi-variogram can be calculated using Eq. (10.1);

https://doi.org/10.1007/978-3-030-22680-0_2
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Fig. 10.5 Conceptual plots
of spatial correlation ρ(h),
spatial covariance C(h), and
spatial semi-variance γ (h)

γ (h) = 1

2N (h)

∑

(i, j)|hi j=h

(xi − x j )
2 (10.1)

where the data values are xi , . . . , xn and the summation of the N (h)whose locations
are separated by h. The h is bolded to represent multiple separation distances. The
semi-variogram represents half of the average squared difference between data pairs
and can be shown to equal the variance of the values being estimated. Similarly,
equations can be found for calculating the covariance and correlation functions, but
for our purposes, we will stick to the semi-variogram.

Semi-variograms are more commonly used in geostatistics because they tend to
filter out the influence of spatially varying mean values. The covariance function and
correlation function require second-order stationarity (constant variance), whereas
the semi-variance only requires what has been termed “intrinsic” stationarity (Math-
eron 1965; Cressie 1992). What this means in practice is that the semi-variogram
tends to be a more stable spatial statistical tool that reliably quantifies the spatial
variability.

Calculating semi-variograms by hand or spreadsheet can be rather tedious. It is
commonly done in computational or statistical programs like MATLAB and R.

10.2 Theoretical Spatial Distributions

Theoretical models are commonly fit to the empirical results to aid in interpreting
and forecasting spatial dependence. Some typical “basic” models that are used to fit
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spatial data include: linear, exponential, spherical, andGaussian.Whether using these
or other models the mathematical functions must be positive definite to guarantee
that the estimations exist are unique and are stable.

Figure 10.6 shows these three models. The separation distance at which the model
reaches a plateau is called the range (a). The semi-variance at the range value is called
the sill (c). All three models shown are for spatial data that exhibit a plateau.

The equation for a spherical model is:

γ (h) =
{
c
(
3h
2a − h3

2a3

)
when h ≤ a

c when h > a
(10.2)

The equation for an exponential model is:

γ (h) = c

[
1 − exp

(
−3h

a

)]
(10.3)

The equation for the Gaussian model is:

γ (h) = 1 − exp

(
−3h2

a2

)
(10.4)

Figure 10.7 shows an example of spherical andGaussianmodels fit to some spatial
variability data. Least squares regression is typically used to fit the theoretical models
to the empirical data, with R-squared being the common metric for the goodness of
fit.

Note that both models start at a nonzero value at short separation distances and
they both approach a plateau at long separation distances. The nonzero start has to
do with measurement uncertainty at a point and is called the nugget in geostatis-
tics literature. The plateau or range indicates the separation distance at which data
pairs are maximally dissimilar. The range is important for lifeline systems analysis
because it shows how far apart things need to be from each other to achieve spatial

Fig. 10.6 Schematic
showing three “basic”
theoretical models used to fit
spatial variability data with a
plateau

γ(
h)

separation distance,h

Gaussian Model

Exponential Model

Spherical Model

range, a

sill, c
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Fig. 10.7 Spherical and Gaussian models fit to semi-variograms of repeated shear wave velocity
measurements over a 300 m stretch of quaternary alluvium (after Moss and Wagstaffe 2019)

independence. If we normalize the semi-variogram to create a general relative semi-
variogram, then we can see in Fig. 10.8 that the nugget is the squared coefficient of
variation

(
δ2

)
from point estimate uncertainty which is the nonspatial uncertainty

addressed in the previous chapters of this book.

γGR(h) = γ (h)

x̄(h)2
(10.5)

In Eq. (10.5) the denominator x̄(h)2 is the squared mean of all values used to
calculate the semi-variogram. Alternatively it can be the squared localized mean as
well (Isaaks and Srivastava 1989).

To properly characterize the range Oliver and Webster (2015) recommend a sam-
ple interval that allows at least five estimates of γ (h) before the range. Fewer than
that can render the estimate of the range ambiguous. If the goal of mapping spatial
variability is to define the range, then care must be taken to sample with sufficient
spatial density to remove ambiguity.

Fig. 10.8 Schematic of a
general relative
semi-variogram showing
how a point estimate of
uncertainty is connected to
the spatial variability
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Example: Bridge System Analysis (after Moss and Hollenback 2015)
To demonstrate the influence of spatial variability for non redundant lifelines, a
bridge with three supports spanning an alluvial flood plain is used. The failure
mode that the three supports will be analyzed for is foundation failure due to
liquefaction. Typically for bridge support failure we would need to analyze the
conditional probability of vertical or lateral displacement given liquefaction,
but for this example failure will be simplified to only liquefaction initiation.

For liquefaction initiation the resistance is R = CRR, the cyclic resistance
ratio, and the load is Q = CSR, the cyclic stress ratio. CRR is usually defined
by a semi-empirical relationship between penetration resistance and CSR, and
CSR is the seismic-induced shear stress needed to liquefy the soil normalized
by the initial vertical effective stress (e.g., Moss et al. 2006; Yazdi and Moss
2016). Both CRR and CSR are a function of the stress conditions so they are
not statistically independent, but for the purposes of exploring spatial corre-
lation we will treat them as if they are independent. For this example we will
also assume that the probability of failure for each bridge support due to liq-
uefaction is 5%: P(MA) = P(MB) = P(MC) = 0.05. This is the probability
of failure for one component of the bridge system. Unimodal bounds of this
series problem give 15 and 5% probability of system failure (Eq. 7.5).

As in the beginning of this chapter, for a three-component series system the
probability of bridge failure is defined by the addition rule:

P(Bridge) = P(∪Mi ) = P(M1 ∪ M2 ∪ M3)

= P(M1) + P(M2) + P(M3) − P(M1M2) − P(M1M3)

− P(M2M3) + P(M1M2M3)

Solving the problem assuming no spatial correlation, which means that the
failure of each support is not dependent the others, the calculation would be
carried out by applying the multiplication rule to each joint event:

P(bridge failure) = P(MA) + P(MB) + P(MC) − P(MA)P(MB)

− P(MA)P(MC) − P(MB)P(MC) + P(MA)P(MB)P(MC)

https://doi.org/10.1007/978-3-030-22680-0_7
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The probability of bridge failure for spatially uncorrelated supports is then:

P(bridge failure) = 3 × 0.05 − 3 × 0.052 + 0.053 = 0.1426

For perfectly spatially correlated supports all the conditional probabilities
are 1.0 and the multiplication rule for each joint event results in the following:

P(bridge failure) = P(MA) + P(MB) + P(MC) − P(MA|MB)P(MB)

− P(MA|MC)P(MC) − P(MB |MC)P(MC)

+ P(MA|MBMC)P(MB |MC)P(MC)

P(bridge failure) = 3(0.05) − 3(1)0.05 + 1(1)0.05 = 0.05

A probability of bridge failure spread of 14–5% may be too ambiguous for
an engineering decision.

Now this is where the spatial correlation of load and resistance comes into
play. The spatial correlation of penetration resistance has been quantified in
different situations and is typically in the range of 10s–100s of meters (e.g.,
Moss et al. 2010;Huber 2013). The spatial correlation of strong ground shaking
that would cause liquefaction is a function of the frequency and/or the phase
of the motion of interest and varies from 10s to 1000s of meters (e.g., Jayaram
and Baker 2009). For liquefaction the phase is not necessarily as important as
the amplitude at a frequency that corresponds to the resonant frequency of the
site, and the spatial correlation length of amplitude is generally in the 100s to
a few 1000 m range.

If will treat the random variables and subsequently the performance func-
tions as jointly normal then the conditional probability P(Mh |Mh+1) and the
correlation coefficient ρ(h) are identical. The spatial variability for our partic-
ular bridge problem using a semi-variogram may look like the figure below.
Let’s say that the range for both load and resistance comes out to roughly
100 m (not an unreasonable for this type of problem). The plot shows the
semi-variogram, which is the complement of the covariance function, which
when normalized becomes the correlation function; all three can be represented
on a single plot. At the range (shown on the plot as the vertical dashed line)
the semi-variance is at a maximum, the covariance a minimum, and the spatial
correlation is approximately zero; ρ(h) ∼= 0. At zero separation distance there
is perfect spatial correlation; ρ(h) ∼= 1.
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If the bridge supports in this problem are 50 m apart, then we are a half of
the way to the range of 100m and the spatial correlation coefficient, and hence,
the conditional probabilities are:

P(MA|MB) = P(MB |MC) = 0.50

P(MA|MC) = 0

A lag distance of 50m gives a conditional probability of 0.50 (half way from
1 to 0), and a lag distance of 100 m gives a conditional probability of 0. We
need to make an assumption about the triple-conditional probability. It would
be reasonable to assume that it is at least identical to the double-conditional
probability of 0.50 but could be slightly higher empirically.

(MA|MBMC) = 0.50

From the spatial variability mapped above, and the resulting conditional
probabilities, we see that the probability of bridge failure is then:

P(bridge failure) = 3(0.05) − 2(0.50)(0.05) − 0(0.05)

+ 0.50(0.50)(0.05) = 0.1125

This ~11% system probability failure is much more precise and actionable
than the unimodal bounds that gave a range of 15–5% probability of failure,
and the perfectly spatially uncorrelated and correlated results of ~14 and 5%
probability of failure.

In general for series systems the inclusion of spatial correlation results in
a decreased system probability of failure from the no spatial correlation or
neglected spatial correlation assumption. This, in and of itself, is a compelling
reason for including spatial correlation in systems analysis.
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10.3 Chapter Summary

• Uncertainty as a function of distance is termed spatial variability.
• This spatial variability can be quantified statistically most easily using a semi-
variogram.

• The spatial relationship can bemodeled using different theoretical functions;Gaus-
sian, spherical, exponential.

• At zero separation distance we see perfect spatial correlation, and at the range or
maximum semi-variance we see zero spatial correlation.

• Quantifying spatial variability in this manner can lead to accurate estimates of
systemprobability of failure for lifelines and other long linear engineered facilities.
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Chapter 11
Bayesian Updating

Bayes’ theorem(orBayes’ rule) is frequently used as ameansof estimating andupdat-
ing probability given incomplete information. There are many forms this updating
can take, and it has been applied to many problems in data science, engineering,
astronomy, economics, biology, sociology, and many other disciplines. This chapter
provides a cursory overview of some updating techniques and applications. There
are many other texts that delve deep into the Bayesian approach that readers are
encouraged to explore (e.g., Gelman et al. 2013).

Bayes’ theorem, as introduced in Chap. 3, solves for the conditional probability
by combining prior knowledge to update the existing knowledge.

P(B|A) = P(A|B)P(B)

P(A)
(11.1)

Knowing the marginal probabilities of A and B and their interrelationship, we can
then determine an updated relationship. The best way to illustrate this is by example.

Example: Landslide Example
Southern California hill slopes are prone to landslides (L) when the rainfall
intensity (R) is high. In previous years, data collected for a particular aspect
of the San Gabriel Mountains has found that for any given 24 h period during
the rainy season the probability of a landslide P(L) is 0.001 (0.1%). When
a landslide does occur the probability of rainfall intensity being greater than
10 cm in 24 h is 0.30 (30%), this is P(R|L). Rainfall data averaged over many
rainy seasons shows that the probability of 24 h rainfall greater than 10 cm
during the rainy season P(R) is 0.005 (0.5%). So if we observe a storm that
brings greater than 10 cm of rain, what is the probability of a landslide P(L|R)?

© Springer Nature Switzerland AG 2020
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P(L|R) = P(R|L)P(L)

P(R)
= 0.30 ∗ 0.001

0.005
= 0.06

Bayes’ theorem has been used here to update the probability of landsliding
P(L) given information on a conditional effectP(R|L). Themarginal probability
of landsliding is 0.1% but the conditional probability of landsliding given
intense rainfall is 6%.

This can equally be applied to probability distributions. Let’s take a variable that
can be represented by a probability distribution with its central tendency and dis-
persion. As new information on the variable becomes available (e.g., more mea-
surements or observations) we revise the estimate by updating the probability
distribution, thereby refining the estimate and increasing our knowledge. Figure 11.1
shows the initial and revised estimates of a lognormally distributed variable given
new information. Both the initial and revised estimates have the same median, but
the dispersion is much reduced in the revised estimate.

Expanding Bayes’ theorem to probability distributions and any number of obser-
vations (Ang and Tang 2007):

P(� = θi |ε) = P(ε|� = θi )P(� = θi )
∑k

i=1 P(ε|� = θi )P(� = θi )
i = 1, 2, . . . , k (11.2)

Fig. 11.1 Initial and revised (updated) lognormal distributions of some variable with identical
median values. The revised or updated distribution has a reduced uncertainty
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In the equation above θ is our parameter of interest and can take on a set of
discrete values i = 1, 2,…, k. The symbol� is the random variable that represents all
possible values of parameter θ . The symbol ε represents an observed outcome from
a test or measurement. As information becomes available the prior assumptions on
the parameter may be modified or updated. The terms in Eq. 11.2 can be described
as follows:

• P(ε|� = θi ) is called the likelihood which is the conditional probability of a
particular observed outcome,

• P(� = θi ) is called the prior which is the marginal probability prior to observing
an outcome,

• P(� = θi |ε) is called the posterior which is the conditional probability that has
been updated or revised given the observation.

• The denominator reduces to a constant by summing over the reduced sample space
of the observation and is called the normalizing constant.

When using continuous probability distributions, Bayes’ rule for updating can be
rewritten in a concise form as shown below (Box and Tiao 1992):

f (θ) = c · L(θ) · p(θ) (11.3)

where f (θ) is the posterior distribution, L(θ) is the likelihood function, p(θ) is the
prior, and c is the normalizing constant calculated as:

c =
⎡

⎣

+∞∫

−∞
L(θ) · p(θ) · dθ

⎤

⎦

−1

(11.4)

If the experimental outcome is an observed set of values (x1, x2, …, xn) that
represent a random sample from a population (X) with an underlying PDF ( f (x)),
the probability of observing this particular set of values is the likelihood function
with a distribution parameter (θ ):

L(θ) =
n∏

i=1

f (xi |θ) (11.5)

It should be noted that this likelihood function is identical to that derived using
the classical statistics approach of maximum likelihood estimation (Ang and Tang
2007).

For a Gaussian population with known standard deviation, the likelihood function
for the mean is:

L(μ) =
n∏

i=1

1√
2πσ

exp

[

−1

2

(
xi − μ

σ

)2
]

(11.6)
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It can be shown (e.g., Tang 1971) that the product of normal PDFs with their
respective means and standard deviations is also a normal PDF with its sample mean
and standard deviation:

L(μ) = Nμ

(

x̄,
σ√
n

)

(11.7)

Note that the standard deviation divided by the square root of the number of
samples is often called the standard error.

Ifmeasurement error (epistemic) is quantified it can be combinedwith the inherent
variability (aleatory) using the total probability theorem to capture the total uncer-
tainty:

L(μ) = Nμ

(

x̄,
√

σ 2
e + σ 2

a /n

)

(11.8)

Here the subscript e is for epistemic and a for aleatory uncertainty. In this way
we have a comprehensive measurement of the uncertainty present in the problem.

11.1 Conjugate Distribution

The normalizing constant (Eq. 11.4) is often the difficult part of the updating process,
and it is common to numerically solve this integral, particularly with sequential
updating problems. One simple solution is an analytical method called conjugate
distributions which provides closed-form solutions for the posterior if the likelihood
and prior are of specific paired distributions (And and Tang 1984; Der Kiureghian
2001). If we assume we have a Gaussian likelihood, then this can be conjugate with
a Gaussian prior and posterior.

If p(θ) = N (μ, σ ) and L(θ) = N
(
μ′, σ ′) then f (θ) = N

(
μ′′, σ ′′) (11.9)

Equation 11.9 says that if the prior and likelihood are normally distributed with
their respective means and standard deviations, then the posterior is normally dis-
tributed with its mean and standard deviation. Here we are treating the standard
deviations as known and are solving for the posterior mean. For a problem of sequen-
tial observations the recursive posterior statistics can be found with the following
equations (Der Kiureghian 2001):

μ′′ = μ′/σ ′2 + μ/σ 2

1/σ ′2 + 1/σ 2
and σ ′′ =

√
1

1/σ ′2 + 1/σ 2
(11.10)
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Other conjugate priors exist and can be found in Ang and Tang (2007) and other
references. The Gaussian is the only recursive conjugate prior that can be used for
repeated observations because it always results in a Gaussian posterior.

Example: Normal Conjugates Example
In this example we are evaluating an underwater site for load-bearing founda-
tion purposes [a top secret installation]. No subsurface information exists other
than the soil is probably clayey; therefore, the prior distribution of undrained
strength of clayey soil (c = su) could be within a large range from as low as
10 kPa up to 160 kPa or higher (Phoon and Kulhawy 1999). In assuming nor-
mal conjugates this means we must use a symmetric distribution, so we take
the range of 10–160 and divide by 6 to give three standard deviations on either
side of the mean. The estimated statistics we arrive at are μ = 85 and σ = 25.

To improve this subjective estimate we consult a surficial geology map for
this underwater location and find that the proposed foundation location plots
within a unit of lacustrine clay. Based on our previous experience with this
surficial geologic unit we tighten the bound by ascribing the likelihood with
the statistics of μ = 90 and σ = 15.

Running these numbers through Eq. 11.6 gives us:

μ′′ = 90/152 + 85/252

1/152 + 1/252
= 88.1 kPa

σ ′′ =
√

1

1/152 + 1/252
= 15.6 kPa

Plotting these results we see that making an observation (i.e., determining
the surficial geologic unit) has resulted in reduced uncertainty for the undrained
strength.
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Example: Bridge Survey (after Ang and Tang 2007)
The elevationmeasurements of the top of a bridge bent are important for proper
bridge alignment. Survey is a precise tool; however, there is uncertainty that
exists in the process due to temperature fluctuations, air quality, operator vari-
ability, equipment variability, etc. For a particular bent one surveying company
made five measurements during construction relative to a project benchmark,
20.45, 20.38, 20.51, 20.42, 20.46 m. It has been determined through years of
analyzing survey data that the typical COV of the inherent variability is 0.4%.
Assume that the measurement error for the surveying equipment is normal
with a zero mean and standard deviation of 0.01. There was also a prior survey
performed by a different company that provided an estimate 20.42 m and a
typical standard error of 0.020 m.

What is a likelihood estimate of the actual elevation basedon thefirst survey?
What is an updated estimate of the actual elevation given the information from
the prior survey?

The samplemean andknown standard deviation basedon thefirst company’s
surveying is:

x̄ = 20.444 m

σ = 0.082 m
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Including the measurement uncertainty using Eq. 11.8:

σtotal =
√
0.0102 + 0.0822/5 = 0.038

The estimate by the first company following Eq. 11.7 is then
N(20.444,0.038) m.

Now to incorporate the prior information from the other company we use
conjugate distributions to update the Gaussian PDF. The total uncertainty for
the other company is:

σtotal =
√
0.0102 + 0.0202 = 0.022

Solving for the posterior mean and standard deviation using Eq. 11.10:

μ′′ = (20.420)(0.038)2 + (20.444)(0.022)2

(0.038)2 + (0.022)2
= 20.587 m

σ ′′ =
√

(0.038)2(0.022)2

(0.038)2 + (0.022)2
= 0.023 m

The updated estimate gives us amore robustmean and a reduced uncertainty
because there is more information informing the estimate.We can continue this
updating process with each measurement to resolve a more and more accurate
estimate of the mean value.

11.2 Bayesian Search

Application of Bayesian updating is often found in sequential form like what is used
for search and rescue operations by the US Coast Guard, the US Air Force, US Navy,
and others (Stone 1975). This type of application is often termed Bayesian search
theory and has proven very successful in locating overboard seamen, lost munitions,
sunken submarines, and other missing items.

If we are searching for say a missing submarine, we start with all the information
on the submarine’s last known position. We combine that with information such as
the last known heading and speed alongwith knowledge of ocean currents, water tem-
peratures, wind patterns, water depth, ocean bottom bathymetry, and other pertinent
known or estimated variables. All this is used to form an estimate of the submarine’s
current location, which is inherently uncertain and becomes the prior distribution.We
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Fig. 11.2 Prior probability
distribution of location of a
lost item (e.g., submarine)
with a georeferenced search
grid overlayed on the area

then overlay a georeferenced search grid on this prior distribution and focus search
efforts on the most likely grid square first (Fig. 11.2).

Search operations are imperfect because speed and time are critical; thoroughness
is sacrificed for expediency when lives or money are at stake. The likelihood of
locating a lost item within a grid square if that item is in fact there is less than 100%
because of the many factors that can diminish the accuracy of the search (e.g., poor
weather, low visibility, large search area, search speed/altitude, etc.). For example
the probability of a search team detecting an overboard crewman in a grid square if
they are in that grid square is around 80% based on forensic studies by the Coast
Guard.

If a team searches a particular grid square and does not locate the lost item then
the probability for the grid square can be updated using Bayes’ rule. The grid squares
that were not searched can also be updated given the new information. The posterior
probabilities of the searched and not searched grid squares can then be used to develop
an updated distribution of the most likely area where the lost item is located. This is
repeated until the lost item is found.

In each grid square if the prior probabilty of the lost item being located there is
p, and the probability of detecting the lost item if it is in fact there is q, then we can
rewrite Eq. 11.1 for each grid square. If P(B) the prior is p, P(A|B) the likelihood of
not detecting the lost item in the grid square is (1 − q) the complement of finding
it, and P(A) the sample space is ((1 − p) + p(1 − q)), then P(B|A) the posterior p′

s
can be found as:
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p′
s = p(1 − q)

(1 − p) + p(1 − q)
= p

1 − q

1 − pq
< p (11.11)

For the grid squares not searched the posterior p′
n becomes:

p′
n = p

1

1 − pq
> p (11.12)

The numerator in Eq. 11.12 is 1 because the probability of not finding the lost
item when no search is conducted in that grid square is 100%.

A benefit of this type of search method is that by using probability updating
along with search team costs, the likelihood, and cost of finding the lost item can be
estimated giving a risk estimate for the search and rescue (e.g., after five days the
probability of success will be 95% with a total cost of $1.2 USD).

In search and rescue the first hurdle is in creating a prior that is as informative as
possible by incorporating all available information, which is a Bayesian approach in
and of itself. The second hurdle is mobilizing search teams that can cover the prior
distribution region as efficiently as possible, maximizing the likelihood of detection
while minimizing time and cost of the search. The updating process itself is straight
forward and only requires the sequential updating of information as it is reported
back from the search teams. The following example demonstrates this process.

Example: Search and Rescue
The following grid shows the prior probability estimates of the location of a
shipmate who was swept overboard in rough waters. Note the total probability
of the grid squares sums to 1.0; 4 by 0.10 plus 12 by 0.05.
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The search team investigates square B2 and does not find the overboard
shipmate. If this search team is expected to have 80% probability of detecting
a lost person when one is present then the updated probability of that particular
grid square is:

p′
s = 0.10

1 − 0.80

1 − (0.10)0.80
= 0.022

For the other more likely grid squares that were not searched:

p′
n = 0.10

1

1 − (0.10)0.80
= 0.109

And for the less likely grid squares that were not searched:

p′
n = 0.05

1

1 − (0.05)0.80
= 0.052

We see a slight increase in the probability of the unsearched grid squares
and a large decrease in the probability of the grid square that was searched.
The revised grid shows the updated probabilities and refocuses the search team
efforts on the region of the high likelihood grid squares.
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0.109 

0.052 

0.052 
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0.052 

0.052 

0.052 

0.052 0.052 

0.052 0.052 

A            B              C              D

1 

2 

3 

4 

Some keys to real search operations are discretizing the area as finely as
possible while considering the search team(s) capacity, developing the most
informative prior possible, and searching in an efficient and rapid manner.
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11.3 Chapter Summary

• Bayesian updating provides a formal means of incorporating prior information to
improve an estimate of a distribution.

• Updating can be performed one time or sequentially depending on the nature of
the problem and the availability of the information.

• Conjugate distributions provide a closed-form solution for Bayesian updating in
certain situations. For a normal likelihood distribution and a normal prior distri-
bution, the posterior distribution is also normal.
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Appendix A
Standard Normal Probability Tables

There is no closed-form integral for the normal distribution. Because it is so fre-
quently used, approximations of the CDF are commonly found in most computa-
tional devices. The following pages provide tabular results of the standard normal
cumulative distribution function, N(0,1). In the tables, x is the value of interest and
UðxÞ is the integral of the standard normal PDF at that value. The x represents the
number of standard deviations away from the mean the value is located, so a value
of 1.00 is approximately the 84th percentile or 84% probability, the value 2.00 is
approximately the 98th percentile or 98% probability, and so on.

The standard normal CDF can also be approximated using many equations that
can be found in the literature. A simple function based on a Taylor series expansion
is shown below (Marsaglia 2004) with its accuracy a function of the number of
terms used in the expansion:

UðxÞ ffi 1
2
þ/ðxÞ xþ x3

3
þ x5

3� 5
þ x7

3� 5� 7
þ x9

3� 5� 7� 9
þ � � �

� �

x U(x) x U(x) x U(x) x U(x)

0.00 0.5000 0.77 0.7794 1.54 0.9382 2.31 0.9896

0.01 0.5040 0.78 0.7823 1.55 0.9394 2.32 0.9898

0.02 0.5080 0.79 0.7852 1.56 0.9406 2.33 0.9901

0.03 0.5120 0.80 0.7881 1.57 0.9418 2.34 0.9904

0.04 0.5160 0.81 0.7910 1.58 0.9429 2.35 0.9906

0.05 0.5199 0.82 0.7939 1.59 0.9441 2.36 0.9909

0.06 0.5239 0.83 0.7967 1.60 0.9452 2.37 0.9911

0.07 0.5279 0.84 0.7995 1.61 0.9463 2.38 0.9913

0.08 0.5319 0.85 0.8023 1.62 0.9474 2.39 0.9916

0.09 0.5359 0.86 0.8051 1.63 0.9484 2.40 0.9918

0.10 0.5398 0.87 0.8078 1.64 0.9495 2.41 0.9920
(continued)
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(continued)

x U(x) x U(x) x U(x) x U(x)

0.11 0.5438 0.88 0.8106 1.65 0.9505 2.42 0.9922

0.12 0.5478 0.89 0.8133 1.66 0.9515 2.43 0.9925

0.13 0.5517 0.90 0.8159 1.67 0.9525 2.44 0.9927

0.14 0.5557 0.91 0.8186 1.68 0.9535 2.45 0.9929

0.15 0.5596 0.92 0.8212 1.69 0.9545 2.46 0.9931

0.16 0.5636 0.93 0.8238 1.70 0.9554 2.47 0.9932

0.17 0.5675 0.94 0.8264 1.71 0.9564 2.48 0.9934

0.18 0.5714 0.95 0.8289 1.72 0.9573 2.49 0.9936

0.19 0.5753 0.96 0.8315 1.73 0.9582 2.50 0.9938

0.20 0.5793 0.97 0.8340 1.74 0.9591 2.51 0.9940

0.21 0.5832 0.98 0.8365 1.75 0.9599 2.52 0.9941

0.22 0.5871 0.99 0.8389 1.76 0.9608 2.53 0.9943

0.23 0.5910 1.00 0.8413 1.77 0.9616 2.54 0.9945

0.24 0.5948 1.01 0.8438 1.78 0.9625 2.55 0.9946

0.25 0.5987 1.02 0.8461 1.79 0.9633 2.56 0.9948

0.26 0.6026 1.03 0.8485 1.80 0.9641 2.57 0.9949

0.27 0.6064 1.04 0.8508 1.81 0.9649 2.58 0.9951

0.28 0.6103 1.05 0.8531 1.82 0.9656 2.59 0.9952

0.29 0.6141 1.06 0.8554 1.83 0.9664 2.60 0.9953

0.30 0.6179 1.07 0.8577 1.84 0.9671 2.61 0.9955

0.31 0.6217 1.08 0.8599 1.85 0.9678 2.62 0.9956

0.32 0.6255 1.09 0.8621 1.86 0.9686 2.63 0.9957

0.33 0.6293 1.10 0.8643 1.87 0.9693 2.64 0.9959

0.34 0.6331 1.11 0.8665 1.88 0.9699 2.65 0.9960

0.35 0.6368 1.12 0.8686 1.89 0.9706 2.66 0.9961

0.36 0.6406 1.13 0.8708 1.90 0.9713 2.67 0.9962

0.37 0.6443 1.14 0.8729 1.91 0.9719 2.68 0.9963

0.38 0.6480 1.15 0.8749 1.92 0.9726 2.69 0.9964

0.39 0.6517 1.16 0.8770 1.93 0.9732 2.70 0.9965

0.40 0.6554 1.17 0.8790 1.94 0.9738 2.71 0.9966

0.41 0.6591 1.18 0.8810 1.95 0.9744 2.72 0.9967

0.42 0.6628 1.19 0.8830 1.96 0.9750 2.73 0.9968

0.43 0.6664 1.20 0.8849 1.97 0.9756 2.74 0.9969

0.44 0.6700 1.21 0.8869 1.98 0.9761 2.75 0.9970

0.45 0.6736 1.22 0.8888 1.99 0.9767 2.76 0.9971

0.46 0.6772 1.23 0.8907 2.00 0.9772 2.77 0.9972

0.47 0.6808 1.24 0.8925 2.01 0.9778 2.78 0.9973

0.48 0.6844 1.25 0.8944 2.02 0.9783 2.79 0.9974

0.49 0.6879 1.26 0.8962 2.03 0.9788 2.80 0.9974

0.50 0.6915 1.27 0.8980 2.04 0.9793 2.81 0.9975
(continued)
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(continued)

x U(x) x U(x) x U(x) x U(x)

0.51 0.6950 1.28 0.8997 2.05 0.9798 2.82 0.9976

0.52 0.6985 1.29 0.9015 2.06 0.9803 2.83 0.9977

0.53 0.7019 1.30 0.9032 2.07 0.9808 2.84 0.9977

0.54 0.7054 1.31 0.9049 2.08 0.9812 2.85 0.9978

0.55 0.7088 1.32 0.9066 2.09 0.9817 2.86 0.9979

0.56 0.7123 1.33 0.9082 2.10 0.9821 2.87 0.9979

0.57 0.7157 1.34 0.9099 2.11 0.9826 2.88 0.9980

0.58 0.7190 1.35 0.9115 2.12 0.9830 2.89 0.9981

0.59 0.7224 1.36 0.9131 2.13 0.9834 2.90 0.9981

0.60 0.7257 1.37 0.9147 2.14 0.9838 2.91 0.9982

0.61 0.7291 1.38 0.9162 2.15 0.9842 2.92 0.9982

0.62 0.7324 1.39 0.9177 2.16 0.9846 2.93 0.9983

0.63 0.7357 1.40 0.9192 2.17 0.9850 2.94 0.9984

0.64 0.7389 1.41 0.9207 2.18 0.9854 2.95 0.9984

0.65 0.7422 1.42 0.9222 2.19 0.9857 2.96 0.9985

0.66 0.7454 1.43 0.9236 2.20 0.9861 2.97 0.9985

0.67 0.7486 1.44 0.9251 2.21 0.9864 2.98 0.9986

0.68 0.7517 1.45 0.9265 2.22 0.9868 2.99 0.9986

0.69 0.7549 1.46 0.9279 2.23 0.9871 3.00 0.9987

0.70 0.7580 1.47 0.9292 2.24 0.9875 … …

0.71 0.7611 1.48 0.9306 2.25 0.9878 3.50 0.99977

0.72 0.7642 1.49 0.9319 2.26 0.9881 … …

0.73 0.7673 1.50 0.9332 2.27 0.9884 4.00 0.99997

0.74 0.7704 1.51 0.9345 2.28 0.9887

0.75 0.7734 1.52 0.9357 2.29 0.9890

0.76 0.7764 1.53 0.9370 2.30 0.9893
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Appendix B
Function Mean and Variance Proof

The following derivation is for the moments (mean and variance) of a function of
random variables.

Take a function of two continuous random variables:

Z ¼ gðX; YÞ

The CDF of Z is then the integral of the joint distribution of X and Y considering
the functional relationship of the variables:

FðzÞ ¼
ZZ

gðx;yÞ� z
f ðx; yÞdxdy ¼

Z1
�1

Zg�1ðz;yÞ

�1
f ðx; yÞdxdy

To include the functional relationship we solve the function for x,
g�1 ¼ g�1 z; yð Þ and change the variable of integration from x to z:

FðzÞ ¼
Z1
�1

Zz
�1

f g�1; y
� � @g�1

@z

����
����dzdy

To find the PDF of Z we take the derivative of the CDF with respect to z:

f ðzÞ ¼
Z1
�1

f g�1; y
� � @g�1

@z

����
����dy

Alternately we could solve the functional form for y instead of x, g�1 ¼ g�1 x; zð Þ
and find:
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f ðzÞ ¼
Z1
�1

f x; g�1� � @g�1

@z

����
����dx

The above results are applicable to any function with random variables of any
distribution. Solving for this PDF (i.e., propagating the error from the independent
variables to the dependent variable) can be simple in certain situations as pointed
out in Chap. 5 or can be difficult when we have a function that is difficult to find the
inverse of and/or when we have random variables with distributions that are
intractable.

In the case where our function is a sum, Z ¼ Xþ Y , we find:

x ¼ z� y

@g�1

@z
¼ @x

@z
¼ 1

Resulting in the PDF:

f ðzÞ ¼
Z1
�1

f ðz� y; yÞdy

or alternatively:

f ðzÞ ¼
Z1
�1

f ðx; z� xÞdx

If X and Y are statistically independent, then we can evaluate using their mar-
ginal distributions:

f ðzÞ ¼
Z1
�1

f ðz� yÞf ðyÞdy

or alternatively:

f ðzÞ ¼
Z1
�1

f ðxÞf ðz� xÞdx

Now if X and Y are Gaussian (i.e., normally distributed), the PDF becomes:
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f ðzÞ ¼ 1
2prXrY

Z1
�1

exp � 1
2

z� y� lX
rX

� �2

� 1
2

x� lY
rY

� �2
" #

dy

¼ 1
2prXrY

exp � 1
2

lY
rY

� �2
("

þ z� lX
rX

� �2
) Z1

�1
exp � 1

2
uy2 � 2vy
� �� �3

5 dy

where u ¼ 1
r2X

þ 1
r2Y

and v ¼ lY
r2Y

þ z�lX
r2X

substituting w ¼ y� v
u the integral becomes

Z1
�1

exp � 1
2

uy2 � 2vy
� �� �

dy

¼ ev
2=2u

Z1
�1

exp � 1
2
uw2

� �
dw ¼

ffiffiffiffiffiffiffiffiffiffi
2p=u

p
exp v2=2u
� �

Reducing the algebra in the full distribution reveals:

f ðzÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p r2X þ r2Yð Þ

p exp � 1
2

z� lX þ lYð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2X þ r2Y

p
 !2

2
4

3
5

which is the definition of the joint normal PDF with the moments:

lZ ¼ lX þ lY

r2Z ¼ r2X þ r2Y

This can be solved for in a similar manner with correlated X and Y resulting in
the moments:

lZ ¼ lX þ lY

r2Z ¼ r2X þ r2Y þ 2qrXrY

If the function contains constants or coefficients in front of statistically inde-
pendent variables, Z ¼ aXþ bY , the moments are then:

lZ ¼ alX þ blY
r2Z ¼ a2r2X þ b2r2Y
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Similarly we can evaluate a difference function, Z ¼ X � Y , which is the same
but with a negative coefficient in front of the second variable:

lZ ¼ lX � lY

r2Z ¼ r2X þ r2Y

This can be expanded to accommodate multiple random variables with their
respective coefficients,

Z ¼
Xn
i¼1

aiXi

lZ ¼
Xn
i¼1

ailXi

r2Z ¼
Xn
i¼1

a2i r
2
Xi

The canonical form of these equations can be found in Chap. 5 in the discussion
on Notation Clarity.

For a product function, Z ¼ XY , where X and Y are lognormal with their
respective moments k and n, we can use the same derivation and find:

ln Z ¼ lnXþ ln Y

kZ ¼ kX þ kY

n2Z ¼ n2X þ n2Y for statistically independent
n2Z ¼ n2X þ n2Y þ 2qnXnY with correlation
And similarly for a quotient function, Z ¼ X=Y , where X and Y are lognormal

with their respective moments k and n:

ln Z ¼ lnX � ln Y

kZ ¼ kX � kY

n2Z ¼ n2X þ n2Y for statistically independent
n2Z ¼ n2X þ n2Y � 2qnXnY with correlation
They also can be easily expanded to multiple lognormal random variables with

their respective coefficients.
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Appendix C
FORM HLRF Algorithm

The following solution using FORM (first order reliability method) demonstrates
the “improved” HLRF (Hasofer–Lind–Rackwitz Fiessler) algorithm as presented in
Zhang and Der Kiureghian (1995). The solution uses matrix mathematics for effi-
cient calculations. The matrices often used in this or similar solutions are shown
below in reliability notation. These matrices, of course, can be expanded to any
number of variables when doing multivariate limit state analysis.

Mean vector M ¼ lR
lQ

� �

Covariancematrix R ¼ r2R qRQrRrQ
qRQrRrQ r2Q

� �

Standard deviationmatrix D ¼ rR 0
0 rQ

� �

Correlationmatrix R ¼ 1 qRQ
qRQ 1

� �

Shown in the following pages is the correlated and uncorrelated cut slope
problem which can be compared with other solution methods shown in Chap. 6.
This algorithm can be applied equally to any reliability problem by defining the
limit state function, g(x), transforming the variables to standard normal space, and
solving for the gradient of g(x).

Setup: We initialize the problem with the following information.

The limit state function g(x) for the cut slope problem contains cohesion and
Gamma as correlated or joint normals with a correlation coefficient of 0.5.

© Springer Nature Switzerland AG 2020
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gðxÞ ¼ c� H
4
c

R is the correlation matrix, and D is the standard deviation matrix.

R ¼ 1 0:5
0:5 1

� �
D ¼ 30 0

0 2

� �

We find the L matrix using Cholesky decomposition.

L ¼ choleskyðRÞ L ¼ 1 0
0:5 0:866

� �

M is the vector of mean values. We set the initial trial of this iterative solution, X, to
be equal to the mean values. H is a constant in this analysis.

M ¼ 100
20

� �
X ¼ M H ¼ 10

Transformation: The variables are transformed into standard normal space, from
x to u, as follows.

u ¼ L�1D�1 X �Mð Þ

gðxÞ ¼ M0 � H
4
M1

The gradient vector has the partial derivatives of g(x).

rgðxÞ ¼ 1
�H=4

HRLF Algorithm: We solve the Jacobian matrix as shown and follow the steps of
the HLRF algorithm.

GðuÞ ¼ gðxÞ Jux ¼ L�1D�1 Jxu ¼ Jux�1

rGðuÞ ¼ JxuTrgðxÞ ¼ 27:50
�4:33

� �

a ¼ rGðuÞ
rGðuÞj j ¼

�0:988
�0:156

� �
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Direction Vector:

d ¼ gðxÞ
rGðuÞj j þ a � u

� �
a� u ¼ �1:774

0:279

� �

step ¼ 1

New Point:

unew ¼ uþ step � d ¼ �1:774
0:279

� �

Check:

uj j
rGðuÞj j ¼ 0

1 ¼ 1

m1 ¼ 0:5 � uj jð Þ2 þ 1 � gðxÞj j ¼ 50

Evaluate g(x) for new point.

m2 ¼ 0:5 � unewð Þ2 þ 1 � gðxÞ ¼ 51:574
50:039

� �

Convergence is achieved if the ratio of the limit state function at the new and old
mean values is below some prescribed tolerance threshold. The results in standard
normal space and original space are then:

unew ¼ �1:774
�0:279

� �

a ¼ �0:988
0:156

� �

b ¼ aT � unew ¼ 1:796

pf ¼ U � bj j; 0; 1ð Þ ¼ 0:0362

The reliability index and the probability of failure can be checked against the
exact, approximate, and numerical solution for this same problem in Chap. 6.

Now solving the cut slope problem, this time for uncorrelated normals.
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Setup:

gðxÞ ¼ c� H
4
c

R ¼ 1 0
0 1

� �
D ¼ 30 0

0 2

� �

L ¼ choleskyðRÞ L ¼ 1 0
0 1

� �

M ¼ 100
20

� �
X ¼ M H ¼ 10

Transformation:

u ¼ L�1D�1 X �Mð Þ

gðxÞ ¼ M0 � H
4
M1

rgðxÞ ¼ 1
�H=4

HRLF Algorithm:

GðuÞ ¼ gðxÞ Jux ¼ L�1D�1 Jxu ¼ Jux�1

rGðuÞ ¼ JxuTrgðxÞ ¼ 30
�5

� �

a ¼ rGðuÞ
rGðuÞj j ¼

�0:986
0:164

� �

Direction Vector:

d ¼ gðxÞ
rGðuÞj j þ a � u

� �
a� u ¼ �1:622

0:27

� �

step ¼ 1
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New Point:

unew ¼ uþ step � d ¼ �1:622
0:270

� �

Check:
uj j

rGðuÞj j ¼ 0

1 ¼ 1

m1 ¼ 0:5 � uj jð Þ2 þ 1 � g xð Þj j ¼ 50

Evaluate g(x) for new point.

m2 ¼ 0:5 � unewð Þ2 þ 1 � g xð Þ ¼ 51:315
50:037

� �

unew ¼ �1:622
0:270

� �

a ¼ �0:986
0:164

� �

b ¼ aT � unew ¼ 1:644

pf ¼ U � bj j; 0; 1ð Þ ¼ 0:0501

Reference

Zhang, Y., & Der Kiureghian, A. (1995). Two improved algorithms for reliability analysis. In
Reliability of and optimization of structural systems. Proceedings of 6th IFIP Working
Conference on Optimization of Structural Systems (pp. 297–304).
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